
Weekly Assignment 3

Total: 100

CS 2500: Algorithms

Due Date: October 7, 2024 at 11.59 PM

Instructions

• Submit your solutions by the deadline specified above.

• Ensure that your work is your own.

• Write your answers clearly and show all your work.

• If you have any questions, ask during recitations or office hours.

1 Problems

1.1 Max Heap Operation [12 points]

1. Illustrate the operation of Max-Heapify(A,3) on the array A = [27,17,3,16,13,10,1,5,7,12,4,8,9,0.
[4 points]

2. Starting with the algorithm for Max-Heapify, write the algorithm for Min-Heapify(A,i), which per-
forms the corresponding manipulation on a minheap. How does the running time of Min-Heapify

compare with that of Max-Heapify? [3 points]

3. What is the effect of calling Max-Heapify(A,i) when the element A[i] is larger than its children? [2
points]

4. What is the effect of calling Max-Heapify(A,i) for i > A.heap-size/2? [3 points]

1.2 Build Heap Operation [14 points]

1. Prove that algorithm Build-Max-Heap given on Slide 34 of Lecture 12 is correct using the loop invariant
method. [4 points]

2. Illustrate the operation of Build-Max-Heap on the array A = [5,3,17,10,84,19,6,22,9]. [3 points]

3. We obtained a tighter asymptotic bound on Build-Max-Heap in class. In doing so, we assumed the
following:

(a) There are at most ⌈ n
2h+1 ⌉ elements with a height h in a heap with n elements. [3 points]

(b)
⌈

n
2h+1

⌉
≥ 1

2 ∀h ∈ [0, ⌊log n⌋] [4 points]

Prove (a) and (b) above.
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1.3 Heap Sort [12 points]

1. Illustrate the operation of Heap-Sort on the array A = [5,13,2,25,7,17,20,8,4]. [3 points]

2. Argue the correctness of Heap-Sort using the following loop invariant [4 points]

At the start of each iteration of the for loop of lines 2-5, the subarray A[1:i] is a max-heap
containing the i smallest elements of A[1:n], and the subarray A[i+1:n] contains the n− i
largest elements of A[1:n], sorted.

3. What is the running time of Heap-Sort on an array A of length n that is already sorted in increasing
order? How about if the array is already sorted in decreasing order? [5 points]

1.4 Merge Sort [12 points]

1. Suppose a[1 : m] and b[1 : n] both contain sorted elements in non-decreasing order. Write an algorithm
that merges these items into c[1 : m + n]. Your algorithm should be shorter than algorithm Merge
(Slide 10, Lecture 11) since you can now place a large value in a[m+ 1] and b[n+ 1]. [4 points]

2. The sequences X1, X2, . . . , Xℓ are sorted sequences such that
∑ℓ

i=1 |Xi| = n. Show how to merge these
ℓ sequences in time O(n log ℓ). [8 points]

2 Finding the Median of Two Sorted Arrays

This problem tests your ability to develop efficient algorithms using the divide-and-conquer approach. It’s
a popular interview question at leading tech companies like Google, Facebook, and Amazon, where it’s used
to assess your problem-solving skills, particularly in software engineering and data science roles.

• You must submit both the source code and a brief report that explains your approach, the algorithms
used, and any challenges encountered.

• Ensure your code is well-documented, with comments explaining the purpose of key sections and
functions.

• Your code will be evaluated on both correctness and efficiency, as well as clarity and organization.

2.1 Coding Exercise [20 points]

2.1.1 Task

Write a function findMedianSortedArrays(nums1, nums2) that takes two sorted arrays, nums1 and nums2

and returns the median of the two arrays. The function must run in O(log(m+ n)) time.

2.1.2 Constraints

• nums1.length = m

• nums2.length = n

• 0 ≤ m ≤ 1000

• 0 ≤ n ≤ 1000

• 1 ≤ m+ n ≤ 2000

• −106 ≤ nums1[i], nums2[i] ≤ 106
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2.1.3 Examples

• Example 1:

– Input: nums1 = [1,3], nums2 = [2]

– Output: 2.00000

– Explanation:
The merged array is [1,2,3], and the median is 2.

• Example 2:

– Input: nums1 = [1,2], nums2 = [3,4]

– Output: 2.50000

– Explanation:
The merged array is [1,2,3,4], and the median is 2+3

2 = 2.5.

2.2 Analysis [30 points]

1. Analyze the time complexity of your implementation. [5 points]

2. What is the space complexity of your solution? Discuss whether there are trade-offs between time and
space complexity in your approach. [5 points]

3. How does your solution ensure that the median is found in O(log(m+n)) time? Describe the key steps
and techniques used to achieve this efficiency. [5 points]

4. Describe how your algorithm handles the following edge cases:

(a) m = 0, n = 1 (i.e., one of the arrays is empty). [2 points]

(b) Arrays with equal elements (e.g., nums1 = [2, 2], nums2 = [2, 2]). [2 points]

(c) Arrays of drastically different sizes (e.g., nums1 = [1], nums2 = [106 − 1, 106]). [4 points]

5. How does your algorithm perform as the values of m and n approach their limits (e.g., m+n = 2000)?
What are the potential bottlenecks, and how might you address them? [4 points]

6. Suppose the problem was extended to find the median of three sorted arrays, nums1, nums2, and
nums3. How would your approach change to handle this new constraint? [3 points]

2.3 Bonus Question: Optimization Challenge [10 points]

For very large inputs, your algorithm should minimize unnecessary operations. Explain and implement any
optimizations (e.g., eliminating unnecessary comparisons or handling special cases) that can further improve
your algorithm’s performance in practice.
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