CS 2500: Algorithms

Lecture 9: Program Correctness and Sorting: Part |

Shubham Chatterjee
Missouri University of Science and Technology, Department of Computer Science

September 17, 2024

1/46



Quick assignment: Problem 1: Recursive algorithm for

mode

Problem Statement. You are tasked with writing a recursive
algorithm that computes the mode of a given list of integers. The
mode is the element that appears most frequently in the list. If
there are multiple modes, the algorithm should return one of them.

© Recursive Algorithm. Implement a recursive algorithm in
Python that finds the mode of the list.

@ Recurrence Relation. Analyze the time complexity of your
recursive algorithm by deriving the recurrence relation.

© Proof of correctness. Prove the correctness of your
algorithm using mathematical induction.

2/46



Quick assignment: Problem 1: Recursive algorithm for

mode

Recursive Algorithm

Function ModeRecursive (Ist, freq_dict=None, idz=0):
if freq_dict == None then
| freq.dict + {}
if idz == len(lst) then
max_freq ¢ -1
mode_clement < None
foreach (element, frequency) in freq.dict do
if frequency > maz._freq then
max_freq <+ frequency
L mode_element < element

return mode_clement

current_clement < 1st[idx]

if current_element in freq_dict then

L freq-dict|current_clement] « freq_dict[current_clement] + 1
else

| freq dict[current element] + 1

return ModeRecursive (Ist, freq-dict, idz+1)

3/46



Quick assignment: Problem 1: Recursive algorithm for

mode

Base Case

@ Consider the case where the input list 1st is empty, i.e.,
len(1st) = 0.

@ In this case, the recursive function reaches the base case
immediately because the index idx = 0 is equal to the length
of the list.

@ At this point, the algorithm initializes a variable max _freq =
-1 and mode_element = Nomne, and returns None, as there
are no elements to process.

@ This is the expected behavior because the mode of an empty
list is undefined (no elements exist). Thus, the base case is
correct.

4/46



Quick assignment: Problem 1: Recursive algorithm for

mode

Inductive Hypothesis

@ Suppose the algorithm works correctly for a list of size n,
meaning it correctly computes the mode of any list with n
elements.

@ This means that for a list of size n, after processing all
elements, the frequency dictionary freq_dict stores the
correct counts for all elements, and the algorithm correctly
identifies the element with the highest frequency as the mode.

5/46



Quick assignment: Problem 1: Recursive algorithm for

mode

Inductive Step: List of Size n+ 1
@ The recursive function starts by processing the (n+1
element of the list.
@ It checks if this element exists in the frequency dictionary:

o If the element is already in the dictionary, it increments its
frequency.

o If the element is not in the dictionary, it adds the element with
an initial count of 1.

o After processing the (n + 1) element, the algorithm makes a
recursive call to process the remaining n elements (sublist up
to index n), which, by the inductive hypothesis, is assumed to
work correctly.

@ Once the recursion returns, the algorithm compares the
frequencies in the dictionary and identifies the element with
the highest count as the mode.

)th

6/46



Quick assignment: Problem 1: Recursive algorithm for

mode

Conclusion of Inductive Step

@ The algorithm correctly processes the (n -+ 1)t element and
updates the frequency dictionary.

@ By the inductive hypothesis, the algorithm works correctly for
the remaining n elements.

@ Therefore, the entire list of size n+ 1 is processed correctly,
and the algorithm identifies the mode accurately.

@ By the principle of mathematical induction, the recursive
algorithm correctly computes the mode for any list of size
n>0.

7/46



Quick assignment: Problem 1: Recursive algorithm for

mode

Breakdown of the Recursive Algorithm
e Base Case: When the list is fully processed (i.e.,
idx = len(Ist)).
e In this case, we compute the mode by iterating over the
frequency dictionary.
o This takes O(U) time, where U is the number of unique
elements in the list.

@ Recursive Case:
o For each element in the list, we either update the frequency
dictionary or add the element with a count of 1.
o This step takes O(1) time for each element (assuming
average-case performance of a hash table).
o The recursion then processes the next element.

8/46



Quick assignment: Problem 1: Recursive algorithm for

mode

Recurrence Equation

o Let T(n) represent the time complexity of the algorithm for a
list of size n.
@ The recurrence relation for this algorithm can be expressed as:

T(n)=T(nh—-1)+0(1) for n>0

@ The base case, when n =0, takes O(U) time to compute the
mode:

7(0) = 0(V)

@ Therefore, the full recurrence equation is:

T(n) = Oo(V) ifn=0
YIAT -1+ 0@) ifn>0

9/46



Quick assignment: Problem 1: Recursive algorithm for

mode

Solving the Recurrence. Let's solve the recurrence equation step
by step:

T(n)=T(n-1)4 0O(1)
T(n—1)=T(n—-2)+ 0O(1)
T(n—2)=T(n-3)+ 0(1)

T(1)=T(0)+ O(1)
Substituting these values back into the original equation:
T(n) = T(0)+ O(1)+ O(1) +---+ O(1) (n terms)
Since T(0) = O(U), we get:
T(n) = O(U)+ O(n)

10/46



Quick assignment: Problem 1: Recursive algorithm for

mode

Final Time Complexity

@ The final time complexity of the recursive algorithm is
O(n+ U), where:

e n is the total number of elements in the list.
o U is the number of unique elements in the list.

@ In the worst case (when all elements are unique, U = n):

o If there are few unique elements (U < n), the time
complexity is still dominated by O(n).

11/46



Problem 2: Sum of Digits

Problem Statement: Sum of Digits

@ Given a number n, we want to find the sum of its digits
recursively.

@ Example: n =123, the sum of digits is 1 +2 + 3 = 6.

@ We aim to define a recursive algorithm, derive its recurrence
equation, solve the equation, and prove its correctness.

12/ 46



Problem 2: Sum of Digits

Recursive Algorithm: Sum of Digits
@ The recursive idea is to:
o Extract the last digit of n (i.e., n%10).
e Recursively compute the sum of the digits of the quotient

n//10.

o Add these two results to get the sum.

Algorithm SumOfDigits(n)

1: if n =0 then

2 return 0 > Base case: no digits left.
3: end if

4: return (n mod 10) + SumOfDigits(n//10)

13/46



Problem 2: Sum of Digits

Breakdown of the Recursive Algorithm
o Base Case: When n =0, the sum of digits is 0, so the
function returns 0.
@ Recursive Case:
e The function extracts the last digit using n%10 (constant time

0(1)).
e The function then recursively processes the quotient n//10,
reducing n by one digit.

14 /46



Problem 2: Sum of Digits

Recurrence Equation

e Let T(n) represent the time complexity of the algorithm for a
number n with d digits.

@ Each recursive step processes one digit and calls the function
for the number n//10 (i.e., removing the last digit).

@ The recurrence relation is:
T(d)=T(d—-1)+ 0(1)

@ The base case occurs when d = 0:

15/46



Problem 2: Sum of Digits

Solving the Recurrence

T(d)=T(d—-1)+ O(1)
T(d—-1)=T(d—-2)+ 0(1)
T(d—2)=T(d—-3)+0()

T(1)=T(0)+ O(1)
Substituting these values back into the original equation:
T(d)=T0O)+0(1)+O0(1)+---+ O(1) (d terms)
Since T(0) = O(1), we get:

T(d) = 0(1) + O(d) = O(d)

16 /46



Problem 2: Sum of Digits

Proof of Correctness: Mathematical Induction. We will prove
the correctness of the algorithm using mathematical induction.
Base Case:

@ When n =0, the algorithm returns 0.

@ This is correct, as the sum of the digits of 0 is indeed 0.

17/46



Problem 2: Sum of Digits

Inductive Step
@ Inductive Hypothesis: Assume that the algorithm correctly
computes the sum of digits for any number with d digits.
@ Inductive Step:
e For a number with d + 1 digits, the algorithm:

o Extracts the last digit using n%10.
@ Recursively computes the sum of the first d digits using n//10.

@ By the inductive hypothesis, the algorithm correctly computes
the sum of the first d digits.

18/46



Problem 2: Sum of Digits

Conclusion of Inductive Step

@ After computing the sum of the first d digits, the algorithm
adds the last digit (which is correctly computed as n%10).

@ Thus, the algorithm correctly computes the sum of all d + 1
digits.
Therefore, by mathematical induction, the algorithm is correct
for any number n.

19/46



Problem 3: Swap Every Two Adjacent Nodes

Problem Statement
@ Given a linked list, swap every two adjacent nodes and return
the new head of the list.
@ You must solve the problem without modifying the values of
the nodes; only the pointers (nodes themselves) can be
changed.

20/ 46



Problem 3: Swap Every Two Adjacent Nodes

Linked List Before Swapping
1 > 2 > 3

Y
N

Linked List After Swapping Adjacent Nodes
2 > 1 > 4 > 3

21/46



Problem 3: Swap Every Two Adjacent Nodes

Recursive Algorithm - Intuition
@ Recursively swap the first two nodes and continue swapping
the rest.
@ Base case: If there are fewer than two nodes, no swap is
needed.

@ Recursive case: Swap the first two nodes, and recursively call
the function to handle the remaining nodes.

22/46



Problem 3: Swap Every Two Adjacent Nodes

Algorithm SwapPairs(head)

1: if head = None or head.next = None then

2 return head > Base case: fewer than two nodes
3: end if

4: first < head

5: second < head.next

6: first.next <— SwapPairs(second.next) > Recursive call
7: second.next < first > Swap the two nodes
8: return second

23 /46



Problem 3: Swap Every Two Adjacent Nodes

Breakdown of Recursive Algorithm

e Base Case: If there are fewer than two nodes left (i.e., no
node or only one node), return the head as no swaps are
needed.

e Recursive Case:

o Assign the first node to first and the second node to second.
o Call the function recursively on the next pair starting from
second.next.

e Swap the first and second nodes and link the new head to the
result of the recursive call.

24 /46



Problem 3: Swap Every Two Adjacent Nodes

Recurrence Equation

@ Let T(n) be the time complexity of the algorithm for a list
with n nodes.

@ The recurrence relation can be written as:
T(n)=T(n—2)+ 0(1)

@ This is because for each pair of nodes, the algorithm swaps
them in constant time O(1), and then recursively processes
the remaining n — 2 nodes.

@ Base Case: If n=0or n=1, no swap is needed, so
T(0) = O(1) and T(1) = O(1).

25 /46



Problem 3: Swap Every Two Adjacent Nodes

Solving the Recurrence

T(n)=T(n-2)+ 0(1)
T(n—2)=T(n—4)+ 0(1)
T(n—4)=T(n—6)+ O(1)

T(2).: T(0)+ O(1)
Summing these gives:
T(n)=0(1)+O0(1)+---4+0(1) (n/2 terms)

Therefore, the time complexity is:

26 /46



Problem 3: Swap Every Two Adjacent Nodes

Proof of Correctness: Induction

o Base Case: When n =0 or n =1, the algorithm correctly
returns the head since no swaps are needed.

@ Inductive Hypothesis: Assume the algorithm correctly swaps
adjacent nodes for a list of n — 2 nodes.

@ Inductive Step: For n nodes, the algorithm swaps the first
two nodes, and then recursively calls itself to swap the next
n — 2 nodes. By the inductive hypothesis, the recursive call
correctly swaps the remaining nodes.

@ Therefore, by mathematical induction, the algorithm correctly
swaps adjacent nodes for any list.

27 /46



Sorting Problem

The Sorting Problem
@ Input: A sequence of n numbers {a1, ap,...,an}.

@ Output: A permutation (reordering) {aj, a,. .., a},} of the
input sequence such that:

G- <d,

@ The input is usually an n-element array but can also be
represented in other ways, such as a linked list.

28 /46



The Structure of the Data

@ In practice, the numbers to be sorted are rarely isolated
values. Each is part of a record.
@ Each record contains:
o Key: The value to be sorted.
o Satellite Data: Additional information that must be
permuted along with the key.
@ When sorting, we often permute the records themselves, or to
minimize data movement, we permute an array of pointers to
the records.

29 /46



Why Sorting?

Why is Sorting Important?

@ Inherent Need: Many applications require sorted data, such
as banks sorting checks by check number.

@ Subroutine in Algorithms: Sorting is a key subroutine in
many algorithms. For example, rendering graphical objects in
the correct order may require sorting.

@ Rich Set of Techniques: Sorting algorithms use various
design techniques that are essential in other algorithms as well.

o Historical and Theoretical Importance: Sorting has been
central to the study of algorithms for decades and helps
develop core algorithmic concepts.

30/46



Sorting and Algorithm Design

@ Sorting is often considered the most fundamental problem in
algorithm design.

@ Many key techniques for algorithm design appear in sorting
algorithms developed over the years.

@ Sorting helps introduce concepts such as divide and conquer,
comparisons, recursion, and algorithmic efficiency.

31/46



Engineering Issues in Sorting

@ The fastest sorting algorithm depends on various factors:

e Prior knowledge about the keys and satellite data.
e The memory hierarchy of the host computer (caches, virtual

memory).
o The software environment (how the sorting function interacts

with other parts of the system).

@ These issues are often best addressed at the algorithmic level
rather than tweaking the implementation code.

32/46



Comparison-Based Sorting Algorithms

Comparison-Based Sorting

@ Sorting algorithms that determine order by comparing
elements.
@ Examples:

o Bubble Sort: Repeatedly swapping adjacent elements if they
are in the wrong order.

o Selection Sort: Repeatedly selecting the smallest (or largest)
element from the unsorted part of the list and placing it at the
beginning.

o Insertion Sort: Builds the sorted array one element at a time
by repeatedly inserting the current element into the correct
position in the sorted portion.

e Merge Sort: Dividing the array in half, sorting each half, and
merging the results.

e Quick Sort: Selecting a pivot element, partitioning the array,
and recursively sorting the partitions.

o Heap Sort: Building a heap from the input data and then
extracting the maximum (or minimum) element repeatedly.

33/46



Conclusion

@ Sorting is a fundamental problem in computer science due to
its wide range of applications.

@ Sorting algorithms help illustrate essential algorithmic
techniques such as recursion, divide-and-conquer, and
comparison-based decision making.

@ Understanding sorting is key to understanding the complexity
and performance of many other algorithms.

34/46



Introduction to Bubble Sort

What is Bubble Sort?
@ Bubble Sort is a simple comparison-based sorting algorithm.

@ The algorithm repeatedly compares adjacent elements and
swaps them if they are in the wrong order.

@ After each pass through the list, the largest unsorted element
"bubbles” to its correct position.

35/46



How Bubble Sort Works

Step-by-Step Process:
@ Traverse the list multiple times, comparing adjacent elements.
@ Swap adjacent elements if they are out of order.

@ After each pass, the largest unsorted element is placed in its
correct position.

@ Repeat the process for the remaining unsorted part of the list.

3646



Example of Bubble Sort (Pass 1)

Initial List: [5,1,4,2,8]
e Compare 5 and 1, swap: [1,5,4,2,8]
e Compare 5 and 4, swap: [1,4,5,2,8]
e Compare 5 and 2, swap: [1,4,2,5,8]
e Compare 5 and 8, no swap: [1,4,2,5,8]

o Largest element 8 is in its correct position.

37/46



Example of Bubble Sort (Pass 2)

Next List: [1,4,2,5,8]
@ Compare 1 and 4, no swap.
e Compare 4 and 2, swap: [1,2,4,5,8]
@ Compare 4 and 5, no swap.

@ Largest element 5 is now in its correct position.

38/46



Example of Bubble Sort (Final Pass)

Next List: [1,2,4,5,8]

@ Compare 1 and 2, no swap.

@ Compare 2 and 4, no swap.

@ No swaps made, the list is sorted!
Final Sorted List: [1,2,4,5,8]

39/46



Bubble Sort Algorithm

Algorithm BubbleSort(arr)

1: n < length of arr

2. fori=0ton—1do > Outer Loop
3: for j=0ton—i—1do > Inner Loop
4 if arr[j] > arr[j + 1] then > Swap if out of order
5: Swap arr[j] and arr[j + 1]

6: end if

7 end for

8: end for

40/ 46



Time Complexity of Bubble Sort

Time Complexity Analysis:
o Worst-case time complexity: O(n?) (when the list is in
reverse order).

o Best-case time complexity: O(n) (if the list is already
sorted and we use early termination).

o Average-case time complexity: O(n?) for a randomly
ordered list.

41/46



Space Complexity of Bubble Sort

Space Complexity:
@ Bubble Sort is an in-place sorting algorithm, meaning it
requires only a constant amount of additional memory.

e Space Complexity: O(1), as it uses a fixed number of extra
variables regardless of the input size.

4246



Optimizing Bubble Sort

Optimization: Early Exit

@ We can optimize Bubble Sort by tracking whether any swaps
were made during a pass.

@ If no swaps are made, the list is already sorted, and we can
terminate early.

@ This reduces the number of unnecessary passes and improves
performance for nearly sorted lists.

43 /46



Optimized Bubble Sort Algorithm

Algorithm OptimizedBubbleSort(arr)

1: n < len(arr)

2: fori=0—n—1do

& swapped <+ False

4: for j=0—-n—i—1do

5 if arr[j] > arr[j + 1] then
6 swap(arr[j], arr[j + 1])
7 swapped < True

8 end if

9 end for

10: if not swapped then

11: break > Terminate if no swaps occurred
12: end if

13: end for

44 /46



Advantages and Disadvantages

Advantages of Bubble Sort:

@ Simple and easy to understand.

@ Requires no additional memory beyond the input array.
Disadvantages of Bubble Sort:

e Very inefficient for large datasets due to its O(n?) time
complexity.

@ Redundant comparisons and swaps, especially when the list is
nearly sorted.

45 /46



Conclusion

Summary of Bubble Sort:

@ Bubble Sort is a simple but inefficient sorting algorithm,
primarily used for small datasets or educational purposes.

e While it can be optimized with early termination, its O(n?)
time complexity makes it impractical for large datasets.

@ Despite its inefficiencies, Bubble Sort is an excellent tool for
learning sorting concepts and basic algorithm design.

46 / 46



