
CS 2500: Algorithms
Lecture 9: Program Correctness and Sorting: Part I

Shubham Chatterjee

Missouri University of Science and Technology, Department of Computer Science

September 17, 2024

1 / 46



Quick assignment: Problem 1: Recursive algorithm for
mode

Problem Statement. You are tasked with writing a recursive
algorithm that computes the mode of a given list of integers. The
mode is the element that appears most frequently in the list. If
there are multiple modes, the algorithm should return one of them.

1 Recursive Algorithm. Implement a recursive algorithm in
Python that finds the mode of the list.

2 Recurrence Relation. Analyze the time complexity of your
recursive algorithm by deriving the recurrence relation.

3 Proof of correctness. Prove the correctness of your
algorithm using mathematical induction.

2 / 46



Quick assignment: Problem 1: Recursive algorithm for
mode

Recursive Algorithm

3 / 46



Quick assignment: Problem 1: Recursive algorithm for
mode

Base Case

Consider the case where the input list lst is empty, i.e.,
len(lst) = 0.

In this case, the recursive function reaches the base case
immediately because the index idx = 0 is equal to the length
of the list.

At this point, the algorithm initializes a variable max freq =

-1 and mode element = None, and returns None, as there
are no elements to process.

This is the expected behavior because the mode of an empty
list is undefined (no elements exist). Thus, the base case is
correct.

4 / 46



Quick assignment: Problem 1: Recursive algorithm for
mode

Inductive Hypothesis

Suppose the algorithm works correctly for a list of size n,
meaning it correctly computes the mode of any list with n
elements.

This means that for a list of size n, after processing all
elements, the frequency dictionary freq dict stores the
correct counts for all elements, and the algorithm correctly
identifies the element with the highest frequency as the mode.

5 / 46



Quick assignment: Problem 1: Recursive algorithm for
mode

Inductive Step: List of Size n + 1

The recursive function starts by processing the (n + 1)th

element of the list.

It checks if this element exists in the frequency dictionary:
If the element is already in the dictionary, it increments its
frequency.
If the element is not in the dictionary, it adds the element with
an initial count of 1.

After processing the (n + 1)th element, the algorithm makes a
recursive call to process the remaining n elements (sublist up
to index n), which, by the inductive hypothesis, is assumed to
work correctly.

Once the recursion returns, the algorithm compares the
frequencies in the dictionary and identifies the element with
the highest count as the mode.

6 / 46



Quick assignment: Problem 1: Recursive algorithm for
mode

Conclusion of Inductive Step

The algorithm correctly processes the (n + 1)th element and
updates the frequency dictionary.

By the inductive hypothesis, the algorithm works correctly for
the remaining n elements.

Therefore, the entire list of size n + 1 is processed correctly,
and the algorithm identifies the mode accurately.

By the principle of mathematical induction, the recursive
algorithm correctly computes the mode for any list of size
n ≥ 0.

7 / 46



Quick assignment: Problem 1: Recursive algorithm for
mode

Breakdown of the Recursive Algorithm

Base Case: When the list is fully processed (i.e.,
idx = len(lst)).

In this case, we compute the mode by iterating over the
frequency dictionary.
This takes O(U) time, where U is the number of unique
elements in the list.

Recursive Case:
For each element in the list, we either update the frequency
dictionary or add the element with a count of 1.
This step takes O(1) time for each element (assuming
average-case performance of a hash table).
The recursion then processes the next element.

8 / 46



Quick assignment: Problem 1: Recursive algorithm for
mode

Recurrence Equation

Let T (n) represent the time complexity of the algorithm for a
list of size n.

The recurrence relation for this algorithm can be expressed as:

T (n) = T (n − 1) + O(1) for n > 0

The base case, when n = 0, takes O(U) time to compute the
mode:

T (0) = O(U)

Therefore, the full recurrence equation is:

T (n) =

{
O(U) if n = 0

T (n − 1) + O(1) if n > 0

9 / 46



Quick assignment: Problem 1: Recursive algorithm for
mode

Solving the Recurrence. Let’s solve the recurrence equation step
by step:

T (n) = T (n − 1) + O(1)

T (n − 1) = T (n − 2) + O(1)

T (n − 2) = T (n − 3) + O(1)

...

T (1) = T (0) + O(1)

Substituting these values back into the original equation:

T (n) = T (0) + O(1) + O(1) + · · ·+ O(1) (n terms)

Since T (0) = O(U), we get:

T (n) = O(U) + O(n)

10 / 46



Quick assignment: Problem 1: Recursive algorithm for
mode

Final Time Complexity

The final time complexity of the recursive algorithm is
O(n + U), where:

n is the total number of elements in the list.
U is the number of unique elements in the list.

In the worst case (when all elements are unique, U = n):

T (n) = O(n)

If there are few unique elements (U ≪ n), the time
complexity is still dominated by O(n).

11 / 46



Problem 2: Sum of Digits

Problem Statement: Sum of Digits

Given a number n, we want to find the sum of its digits
recursively.

Example: n = 123, the sum of digits is 1 + 2 + 3 = 6.

We aim to define a recursive algorithm, derive its recurrence
equation, solve the equation, and prove its correctness.

12 / 46



Problem 2: Sum of Digits

Recursive Algorithm: Sum of Digits

The recursive idea is to:

Extract the last digit of n (i.e., n%10).
Recursively compute the sum of the digits of the quotient
n//10.
Add these two results to get the sum.

Algorithm SumOfDigits(n)

1: if n = 0 then
2: return 0 ▷ Base case: no digits left.
3: end if
4: return (n mod 10) + SumOfDigits(n//10)

13 / 46



Problem 2: Sum of Digits

Breakdown of the Recursive Algorithm

Base Case: When n = 0, the sum of digits is 0, so the
function returns 0.

Recursive Case:
The function extracts the last digit using n%10 (constant time
O(1)).
The function then recursively processes the quotient n//10,
reducing n by one digit.

14 / 46



Problem 2: Sum of Digits

Recurrence Equation

Let T (n) represent the time complexity of the algorithm for a
number n with d digits.

Each recursive step processes one digit and calls the function
for the number n//10 (i.e., removing the last digit).

The recurrence relation is:

T (d) = T (d − 1) + O(1)

The base case occurs when d = 0:

T (0) = O(1)

15 / 46



Problem 2: Sum of Digits

Solving the Recurrence

T (d) = T (d − 1) + O(1)

T (d − 1) = T (d − 2) + O(1)

T (d − 2) = T (d − 3) + O(1)

...

T (1) = T (0) + O(1)

Substituting these values back into the original equation:

T (d) = T (0) + O(1) + O(1) + · · ·+ O(1) (d terms)

Since T (0) = O(1), we get:

T (d) = O(1) + O(d) = O(d)

16 / 46



Problem 2: Sum of Digits

Proof of Correctness: Mathematical Induction. We will prove
the correctness of the algorithm using mathematical induction.
Base Case:

When n = 0, the algorithm returns 0.

This is correct, as the sum of the digits of 0 is indeed 0.

17 / 46



Problem 2: Sum of Digits

Inductive Step

Inductive Hypothesis: Assume that the algorithm correctly
computes the sum of digits for any number with d digits.

Inductive Step:
For a number with d + 1 digits, the algorithm:

Extracts the last digit using n%10.
Recursively computes the sum of the first d digits using n//10.

By the inductive hypothesis, the algorithm correctly computes
the sum of the first d digits.

18 / 46



Problem 2: Sum of Digits

Conclusion of Inductive Step

After computing the sum of the first d digits, the algorithm
adds the last digit (which is correctly computed as n%10).

Thus, the algorithm correctly computes the sum of all d + 1
digits.

Therefore, by mathematical induction, the algorithm is correct
for any number n.

19 / 46



Problem 3: Swap Every Two Adjacent Nodes

Problem Statement

Given a linked list, swap every two adjacent nodes and return
the new head of the list.

You must solve the problem without modifying the values of
the nodes; only the pointers (nodes themselves) can be
changed.

20 / 46



Problem 3: Swap Every Two Adjacent Nodes

Linked List Before Swapping

1 2 3 4

Linked List After Swapping Adjacent Nodes

2 1 4 3

21 / 46



Problem 3: Swap Every Two Adjacent Nodes

Recursive Algorithm - Intuition

Recursively swap the first two nodes and continue swapping
the rest.

Base case: If there are fewer than two nodes, no swap is
needed.

Recursive case: Swap the first two nodes, and recursively call
the function to handle the remaining nodes.

22 / 46



Problem 3: Swap Every Two Adjacent Nodes

Algorithm SwapPairs(head)

1: if head = None or head.next = None then
2: return head ▷ Base case: fewer than two nodes
3: end if
4: first ← head
5: second ← head.next
6: first.next ← SwapPairs(second.next) ▷ Recursive call
7: second.next ← first ▷ Swap the two nodes
8: return second

23 / 46



Problem 3: Swap Every Two Adjacent Nodes

Breakdown of Recursive Algorithm

Base Case: If there are fewer than two nodes left (i.e., no
node or only one node), return the head as no swaps are
needed.

Recursive Case:
Assign the first node to first and the second node to second.
Call the function recursively on the next pair starting from
second.next.
Swap the first and second nodes and link the new head to the
result of the recursive call.

24 / 46



Problem 3: Swap Every Two Adjacent Nodes

Recurrence Equation

Let T (n) be the time complexity of the algorithm for a list
with n nodes.

The recurrence relation can be written as:

T (n) = T (n − 2) + O(1)

This is because for each pair of nodes, the algorithm swaps
them in constant time O(1), and then recursively processes
the remaining n − 2 nodes.

Base Case: If n = 0 or n = 1, no swap is needed, so
T (0) = O(1) and T (1) = O(1).

25 / 46



Problem 3: Swap Every Two Adjacent Nodes

Solving the Recurrence

T (n) = T (n − 2) + O(1)

T (n − 2) = T (n − 4) + O(1)

T (n − 4) = T (n − 6) + O(1)

...

T (2) = T (0) + O(1)

Summing these gives:

T (n) = O(1) + O(1) + · · ·+ O(1) (n/2 terms)

Therefore, the time complexity is:

T (n) = O(n)

26 / 46



Problem 3: Swap Every Two Adjacent Nodes

Proof of Correctness: Induction

Base Case: When n = 0 or n = 1, the algorithm correctly
returns the head since no swaps are needed.

Inductive Hypothesis: Assume the algorithm correctly swaps
adjacent nodes for a list of n − 2 nodes.

Inductive Step: For n nodes, the algorithm swaps the first
two nodes, and then recursively calls itself to swap the next
n − 2 nodes. By the inductive hypothesis, the recursive call
correctly swaps the remaining nodes.

Therefore, by mathematical induction, the algorithm correctly
swaps adjacent nodes for any list.

27 / 46



Sorting Problem

The Sorting Problem

Input: A sequence of n numbers {a1, a2, . . . , an}.
Output: A permutation (reordering) {a′1, a′2, . . . , a′n} of the
input sequence such that:

a′1 ≤ a′2 ≤ · · · ≤ a′n

The input is usually an n-element array but can also be
represented in other ways, such as a linked list.

28 / 46



The Structure of the Data

In practice, the numbers to be sorted are rarely isolated
values. Each is part of a record.

Each record contains:

Key: The value to be sorted.
Satellite Data: Additional information that must be
permuted along with the key.

When sorting, we often permute the records themselves, or to
minimize data movement, we permute an array of pointers to
the records.

29 / 46



Why Sorting?

Why is Sorting Important?

Inherent Need: Many applications require sorted data, such
as banks sorting checks by check number.

Subroutine in Algorithms: Sorting is a key subroutine in
many algorithms. For example, rendering graphical objects in
the correct order may require sorting.

Rich Set of Techniques: Sorting algorithms use various
design techniques that are essential in other algorithms as well.

Historical and Theoretical Importance: Sorting has been
central to the study of algorithms for decades and helps
develop core algorithmic concepts.

30 / 46



Sorting and Algorithm Design

Sorting is often considered the most fundamental problem in
algorithm design.

Many key techniques for algorithm design appear in sorting
algorithms developed over the years.

Sorting helps introduce concepts such as divide and conquer,
comparisons, recursion, and algorithmic efficiency.

31 / 46



Engineering Issues in Sorting

The fastest sorting algorithm depends on various factors:

Prior knowledge about the keys and satellite data.
The memory hierarchy of the host computer (caches, virtual
memory).
The software environment (how the sorting function interacts
with other parts of the system).

These issues are often best addressed at the algorithmic level
rather than tweaking the implementation code.

32 / 46



Comparison-Based Sorting Algorithms

Comparison-Based Sorting

Sorting algorithms that determine order by comparing
elements.

Examples:
Bubble Sort: Repeatedly swapping adjacent elements if they
are in the wrong order.
Selection Sort: Repeatedly selecting the smallest (or largest)
element from the unsorted part of the list and placing it at the
beginning.
Insertion Sort: Builds the sorted array one element at a time
by repeatedly inserting the current element into the correct
position in the sorted portion.
Merge Sort: Dividing the array in half, sorting each half, and
merging the results.
Quick Sort: Selecting a pivot element, partitioning the array,
and recursively sorting the partitions.
Heap Sort: Building a heap from the input data and then
extracting the maximum (or minimum) element repeatedly.

33 / 46



Conclusion

Sorting is a fundamental problem in computer science due to
its wide range of applications.

Sorting algorithms help illustrate essential algorithmic
techniques such as recursion, divide-and-conquer, and
comparison-based decision making.

Understanding sorting is key to understanding the complexity
and performance of many other algorithms.

34 / 46



Introduction to Bubble Sort

What is Bubble Sort?

Bubble Sort is a simple comparison-based sorting algorithm.

The algorithm repeatedly compares adjacent elements and
swaps them if they are in the wrong order.

After each pass through the list, the largest unsorted element
”bubbles” to its correct position.

35 / 46



How Bubble Sort Works

Step-by-Step Process:

Traverse the list multiple times, comparing adjacent elements.

Swap adjacent elements if they are out of order.

After each pass, the largest unsorted element is placed in its
correct position.

Repeat the process for the remaining unsorted part of the list.

36 / 46



Example of Bubble Sort (Pass 1)

Initial List: [5, 1, 4, 2, 8]

Compare 5 and 1, swap: [1, 5, 4, 2, 8]

Compare 5 and 4, swap: [1, 4, 5, 2, 8]

Compare 5 and 2, swap: [1, 4, 2, 5, 8]

Compare 5 and 8, no swap: [1, 4, 2, 5, 8]

Largest element 8 is in its correct position.

37 / 46



Example of Bubble Sort (Pass 2)

Next List: [1, 4, 2, 5, 8]

Compare 1 and 4, no swap.

Compare 4 and 2, swap: [1, 2, 4, 5, 8]

Compare 4 and 5, no swap.

Largest element 5 is now in its correct position.

38 / 46



Example of Bubble Sort (Final Pass)

Next List: [1, 2, 4, 5, 8]

Compare 1 and 2, no swap.

Compare 2 and 4, no swap.

No swaps made, the list is sorted!

Final Sorted List: [1, 2, 4, 5, 8]

39 / 46



Bubble Sort Algorithm

Algorithm BubbleSort(arr)

1: n← length of arr
2: for i = 0 to n − 1 do ▷ Outer Loop
3: for j = 0 to n − i − 1 do ▷ Inner Loop
4: if arr [j ] > arr [j + 1] then ▷ Swap if out of order
5: Swap arr [j ] and arr [j + 1]
6: end if
7: end for
8: end for

40 / 46



Time Complexity of Bubble Sort

Time Complexity Analysis:

Worst-case time complexity: O(n2) (when the list is in
reverse order).

Best-case time complexity: O(n) (if the list is already
sorted and we use early termination).

Average-case time complexity: O(n2) for a randomly
ordered list.

41 / 46



Space Complexity of Bubble Sort

Space Complexity:

Bubble Sort is an in-place sorting algorithm, meaning it
requires only a constant amount of additional memory.

Space Complexity: O(1), as it uses a fixed number of extra
variables regardless of the input size.

42 / 46



Optimizing Bubble Sort

Optimization: Early Exit

We can optimize Bubble Sort by tracking whether any swaps
were made during a pass.

If no swaps are made, the list is already sorted, and we can
terminate early.

This reduces the number of unnecessary passes and improves
performance for nearly sorted lists.

43 / 46



Optimized Bubble Sort Algorithm

Algorithm OptimizedBubbleSort(arr)

1: n← len(arr)
2: for i = 0→ n − 1 do
3: swapped ← False
4: for j = 0→ n − i − 1 do
5: if arr[j ] > arr[j + 1] then
6: swap(arr[j ], arr[j + 1])
7: swapped ← True
8: end if
9: end for

10: if not swapped then
11: break ▷ Terminate if no swaps occurred
12: end if
13: end for

44 / 46



Advantages and Disadvantages

Advantages of Bubble Sort:

Simple and easy to understand.

Requires no additional memory beyond the input array.

Disadvantages of Bubble Sort:

Very inefficient for large datasets due to its O(n2) time
complexity.

Redundant comparisons and swaps, especially when the list is
nearly sorted.

45 / 46



Conclusion

Summary of Bubble Sort:

Bubble Sort is a simple but inefficient sorting algorithm,
primarily used for small datasets or educational purposes.

While it can be optimized with early termination, its O(n2)
time complexity makes it impractical for large datasets.

Despite its inefficiencies, Bubble Sort is an excellent tool for
learning sorting concepts and basic algorithm design.

46 / 46


