
CS 2500: Algorithms
Lecture 8: Master Theorem and Program Correctness

Shubham Chatterjee

Missouri University of Science and Technology, Department of Computer Science

September 12, 2024

1 / 35



Divide and Conquer Recurrences

Divide and Conquer algorithms split a problem into smaller
subproblems, solve them recursively, and combine the results.

Their time complexity can often be described using recurrence
relations.

Example: Merge Sort’s recurrence relation:

T (n) = 2T
(n
2

)
+ O(n)

2 / 35



Simplified Master Theorem

The Simplified Master Theorem is used to solve recurrences of the
form:

T (n) = aT
(n
b

)
+ O(nd)

where:

a ≥ 1: Number of subproblems.

b > 1: Factor by which the problem size decreases.

nd : Cost of combining the subproblem solutions.

3 / 35



Master Theorem - Cases

There are three cases in the Master Theorem, based on the
comparison between a and bd :
Case 1: If a > bd :

T (n) = O(nlogb a)

Case 2: If a = bd :
T (n) = O(nd log n)

Case 3: If a < bd :
T (n) = O(nd)

4 / 35



Example 1: Merge Sort

Let’s apply the Master Theorem to the Merge Sort recurrence:

T (n) = 2T
(n
2

)
+ O(n)

Here, a = 2, b = 2, and d = 1.

Compute bd = 21 = 2.

Since a = bd , we are in Case 2.

Therefore, the solution is:

T (n) = O(n log n)

5 / 35



Example 2: Binary Search

Binary Search recurrence relation:

T (n) = T
(n
2

)
+ O(1)

Here, a = 1, b = 2, and d = 0.

Compute bd = 20 = 1.

Since a = bd , we are in Case 2.

Therefore, the solution is:

T (n) = O(log n)

6 / 35



Example 3: Strassen’s Algorithm

Strassen’s matrix multiplication recurrence:

T (n) = 7T
(n
2

)
+ O(n2)

Here, a = 7, b = 2, and d = 2.

Compute bd = 22 = 4.

Since a > bd , we are in Case 1.

Therefore, the solution is:

T (n) = O(nlog2 7) ≈ O(n2.81)

7 / 35



Example 3: Quicksort

Recurrence:
T (n) = 2T

(n
2

)
+ O(n)

Here, a = 2, b = 2, and d = 1.

Compute bd = 21 = 2.

Since a = bd , we are in Case 2 of the Master Theorem.

Therefore, the solution is:

T (n) = O(n log n)

8 / 35



Example 4: Karatsuba’s Fast Multiplication Algorithm

Recurrence:
T (n) = 3T

(n
2

)
+ O(n)

Here, a = 3, b = 2, and d = 1.

Compute bd = 21 = 2.

Since a > bd , we are in Case 1 of the Master Theorem.

Therefore, the solution is:

T (n) = O(nlog2 3) ≈ O(n1.585)

9 / 35



Generalized Master Theorem

The Generalized Master Theorem is an extension of the
standard Master Theorem for more complex recurrence
relations.

It is applicable when the non-recursive term f (n) is more
complicated than a simple polynomial O(nd).

Recurrence form:

T (n) = aT
(n
b

)
+ f (n)

Where f (n) can be any asymptotic function, not just O(nd).

10 / 35



Recurrence Form

The Generalized Master Theorem solves recurrences of the form:

T (n) = aT
(n
b

)
+ f (n)

where:

a ≥ 1: Number of subproblems.

b > 1: Factor by which the problem size is reduced.

f (n): The cost of the work outside the recursive calls.

The theorem handles more complex f (n) functions, such as
logarithmic or exponential terms.

11 / 35



Case 1: f (n) = O(nlogb a−ϵ)

Case 1: If f (n) grows polynomially slower than nlogb a:

f (n) = O(nlogb a−ϵ)

for some ϵ > 0, then:

T (n) = O(nlogb a)

12 / 35



Case 2: f (n) = Θ(nlogb a logk n)

Case 2: If f (n) = Θ(nlogb a logk n), for some k ≥ 0, then:

T (n) = Θ(nlogb a logk+1 n)

13 / 35



Case 3: f (n) = Ω(nlogb a+ϵ)

Case 3: If f (n) = Ω(nlogb a+ϵ) for some ϵ > 0, and if:

af
(n
b

)
≤ cf (n)

for some constant c < 1, then:

T (n) = Θ(f (n))

14 / 35



Example

Question. Solving the Recurrence:

T (n) = 8T
(n
2

)
+ n2

using Generalized Master Theorem
Step 1: Identify Parameters

T (n) = 8T
(n
2

)
+ n2

Compare with the standard form T (n) = aT
(
n
b

)
+ f (n), where:

a = 8

b = 2

f (n) = n2

Step 2: Calculate logb a

logb a = log2 8 = 3

15 / 35



Example

Step 3: Compare f (n) with nlogb a

f (n) = n2

nlogb a = n3

Since f (n) = O(n3−1), we are in Case 1.
Step 4: Apply Case 1 of the Generalized Master Theorem

T (n) = O(nlogb a) = O(n3)

Final Solution: The time complexity is O(n3).

16 / 35



Conclusion and Key Insights

The Master Theorem provides an efficient way to analyze
divide-and-conquer recurrences, particularly for polynomial
cost functions.

The Generalized Master Theorem extends the standard
version to handle more complex cases where the non-recursive
part grows faster or slower than simple polynomials (e.g.,
logarithmic or exponential terms).

Understanding the relationship between a, b, d , and f (n) is
crucial for selecting the correct case in either theorem.

Both theorems are powerful tools, but always check the
assumptions and the form of the recurrence before applying
them.

Practice solving different recurrences to gain a deeper
understanding and strengthen your skills in applying these
theorems.

17 / 35



Recursive GCD Algorithm

Algorithm RecursiveGCD(a, b)

1: if b = 0 then ▷ Base Case
2: return a
3: else ▷ Recursive Step
4: return RecursiveGCD(b, a mod b)
5: end if

18 / 35



What We Want to Prove

The Recursive GCD algorithm correctly computes the greatest
common divisor (GCD) of two numbers a and b.

We will use mathematical induction on the value of b to
prove correctness.

19 / 35



Proof by Induction: Base Case b = 0

Base Case: b = 0

When b = 0, the algorithm returns a.

According to the definition of GCD:

GCD(a, 0) = a

This is true because any number divides 0, and the greatest
divisor of a and 0 is a.

Therefore, when b = 0, the algorithm correctly returns a,
satisfying the base case.

20 / 35



Proof of Correctness: Inductive Hypothesis

Inductive Hypothesis:

Assume that for all values b′ < b0, the algorithm correctly
computes the GCD of a and b′, i.e.,

RecursiveGCD(a, b′) = GCD(a, b′) for any b′ < b0.

We will now prove that the algorithm works for b = b0.

21 / 35



Proof by Induction: Inductive Step for b = b0

Inductive Step: Prove the algorithm is correct for b = b0

The algorithm calls:

RecursiveGCD(a, b0) = RecursiveGCD(b0, a mod b0)

By the Euclidean algorithm, we know:

GCD(a, b0) = GCD(b0, a mod b0)

This is a property of the GCD: the GCD of two numbers
doesn’t change if the larger number is replaced by its
remainder when divided by the smaller number.

22 / 35



Inductive Step: Continuation

The second argument in the recursive call is a mod b0, which
is smaller than b0, i.e., a mod b0 < b0.

By our inductive hypothesis, we assume that the algorithm
correctly computes the GCD for all values smaller than b0.

Therefore, RecursiveGCD(b0, a mod b0) correctly computes
GCD(b0, a mod b0).

Since GCD(a, b0) = GCD(b0, a mod b0), the recursive call
returns the correct value for GCD(a, b0).

23 / 35



Conclusion of the Proof

By mathematical induction, we have shown that:

The base case (b = 0) works correctly.
The inductive step holds, as the recursive call solves a smaller
instance of the problem, and the GCD is computed correctly.

Therefore, the Recursive GCD Algorithm is correct for all
values of a and b.

24 / 35



Recursive Algorithm for Computing an

Algorithm Power(a, n)

1: procedure Power(a, n) ▷ a is a non-zero real number,
n is a non-negative integer

2: if n = 0 then ▷ Base Case
3: return 1
4: else
5: return a× Power(a, n − 1)
6: end if
7: end procedure

This algorithm recursively computes an by reducing the exponent.

25 / 35



What We Want to Prove

We want to prove that the recursive algorithm correctly
computes an for any non-negative integer n.

We will use mathematical induction on n to prove its
correctness.

26 / 35



Proof by Induction: Base Case n = 0

Base Case: n = 0

When n = 0, the algorithm returns 1.

This is correct because a0 = 1 for any non-zero real number a.

Therefore, the base case holds: Power(a, 0) = 1.

27 / 35



Inductive Hypothesis

Assume that the algorithm correctly computes ak for some
arbitrary non-negative integer k .

That is, assume Power(a, k) = ak .

We will now prove that the algorithm correctly computes ak+1.

28 / 35



Inductive Step

Inductive Step:

When n = k + 1, the algorithm computes:

Power(a, k + 1) = a× Power(a, k)

By the inductive hypothesis, we know that Power(a, k) = ak .

Therefore:

Power(a, k + 1) = a× ak = ak+1

Thus, the algorithm correctly computes ak+1 when n = k + 1.

29 / 35



Conclusion of the Proof

By mathematical induction, we have shown that:

The base case (n = 0) holds, as the algorithm returns 1, which
is correct.
The inductive step holds, as the algorithm correctly computes
ak+1 from ak .

Therefore, the recursive algorithm correctly computes an for
any non-negative integer n.

30 / 35



Recursive Linear Search

Algorithm search(a, i, j, x)

1: if a[i ] = x then
2: return i ▷ Found the element at index i
3: else if i = j then
4: return -1 ▷ Reached the end of the search range

without finding x
5: else
6: return search(a, i + 1, j , x) ▷ Continue searching in

the rest of the array
7: end if

31 / 35



Proof by Induction: Base Case

Base Case: j − i = 1

The subarray consists of a single element at index i .

The algorithm checks whether a[i ] = x :

If a[i ] = x , it returns i , which is correct.
If a[i ] ̸= x , it checks whether i = j , and returns −1, correctly
indicating x is not found.

Thus, the algorithm works correctly for subarrays of size 1.

32 / 35



Proof by Induction: Inductive Hypothesis

Inductive Hypothesis:

Assume the algorithm works correctly for all subarrays of size
k, i.e., when j − i = k.

That is, for any subarray of size k , the algorithm returns the
correct index if x is found, or −1 if x is not found.

33 / 35



Proof by Induction: Inductive Step

Inductive Step:

Now consider a subarray of size k +1, i.e., when j − i = k +1.

The algorithm checks whether a[i ] = x :

If a[i ] = x , it returns i , which is correct.
If a[i ] ̸= x , it makes a recursive call to search(a, i+1, j,

x).

By the inductive hypothesis, the recursive call works correctly
for the remaining subarray of size k.

Therefore, if x is found, the recursive call returns the correct
index; otherwise, it returns −1.

34 / 35



Conclusion of the Proof

By mathematical induction, the recursive linear search
algorithm works correctly for any subarray of size j − i ≥ 1.

Therefore, the algorithm correctly finds the element x or
returns −1 if x is not found.

35 / 35


