CS 2500: Algorithms

Lecture 8: Master Theorem and Program Correctness

Shubham Chatterjee
Missouri University of Science and Technology, Department of Computer Science

September 12, 2024

1/35



Divide and Conquer Recurrences

@ Divide and Conquer algorithms split a problem into smaller
subproblems, solve them recursively, and combine the results.

@ Their time complexity can often be described using recurrence
relations.

@ Example: Merge Sort’s recurrence relation:

n

T(n)=2T (2) +0(n)

2/35



Simplified Master Theorem

The Simplified Master Theorem is used to solve recurrences of the
form:

T(n)=aT (g) + 0(n9)
where:
@ a > 1: Number of subproblems.
@ b > 1: Factor by which the problem size decreases.

o n?: Cost of combining the subproblem solutions.

3/35



Master Theorem - Cases

There are three cases in the Master Theorem, based on the
comparison between a and b?:
Case 1: If a > b7:

T(n) = O(n'ogba)

Case 2: If a = b:
T(n) = O(nlog n)

Case 3: If a < b9:

4/35



Example 1: Merge Sort

Let's apply the Master Theorem to the Merge Sort recurrence:

T(n) =2T (3) + O(n)

@ Here,a=2, b=2,and d = 1.
e Compute b9 =21 = 2.

@ Since a = b?, we are in Case 2.
(]

Therefore, the solution is:

T(n) = O(nlogn)

5/35



Example 2: Binary Search

Binary Search recurrence relation:

@ Here,a=1, b=2, and d =0.
e Compute b9 =20 =1.

@ Since a = b?, we are in Case 2.
(]

Therefore, the solution is:

T(n) = O(logn)

6/35



Example 3: Strassen’s Algorithm

Strassen’s matrix multiplication recurrence:

T(n)=7T (3) +O(n)

@ Here, a=7,b=2,and d = 2.
o Compute b =22 = 4.

@ Since a > b?, we are in Case 1.
(]

Therefore, the solution is:

T(n) — O(nlog2 7) ~ O(n2'81)

7/35



Example 3: Quicksort

Recurrence: N

T(n)=2T (2) +0(n)

Here, a=2, b=2,and d = 1.
Compute b9 =21 = 2.
Since a = b?, we are in Case 2 of the Master Theorem.

Therefore, the solution is:

T(n) = O(nlogn)

8/35



Example 4: Karatsuba's Fast Multiplication Algorithm

Recurrence: N

T(n):3T(2) +0(n)

Here, a=3, b=2,and d = 1.
Compute b9 =21 = 2.
Since a > b?, we are in Case 1 of the Master Theorem.

Therefore, the solution is:

T(n) — O(nlog2 3) ~ O(n1'585)

9/35



Generalized Master Theorem

@ The Generalized Master Theorem is an extension of the
standard Master Theorem for more complex recurrence
relations.

e It is applicable when the non-recursive term f(n) is more
complicated than a simple polynomial O(n9).

@ Recurrence form:

n

T(n) = aT () +f(n)

o Where f(n) can be any asymptotic function, not just O(n?).

10/35



Recurrence Form

The Generalized Master Theorem solves recurrences of the form:
T(n)=aT () +(n)
where:
@ a > 1: Number of subproblems.
@ b > 1: Factor by which the problem size is reduced.
e f(n): The cost of the work outside the recursive calls.

The theorem handles more complex f(n) functions, such as
logarithmic or exponential terms.

11/35



Case 1: If f(n) grows polynomially slower than n'o8s2:

F(n) = O(n'8s27<)

for some ¢ > 0, then:

12/35



Case 2: If f(n) = ©(n'°8s2logk n), for some k > 0, then:

T(n) = ©(n'°%>? logk+1 n)

13/35



Case 3: f(n) = Q(n'gsat<)

Case 3: If f(n) = Q(n'°8>2%¢) for some € > 0, and if:

af (g) < cf(n)
for some constant ¢ < 1, then:

T(n) = ©(f(n))

14/35



Question. Solving the Recurrence:

using Generalized Master Theorem
Step 1: Identify Parameters

T(n)=8T (g) + n?

Compare with the standard form T(n) = aT () + f(n), where:

@a=238
e b=2
° f(n):n2

Step 2: Calculate log, a
log,a = log, 8 =3

15/35



Step 3: Compare f(n) with n'°ss2
o f(n) = n?
° n'8v? = p

Since f(n) = O(n®>"1), we are in Case 1.

Step 4: Apply Case 1 of the Generalized Master Theorem

3

T(n) = O(n"®?) = O(n®)

Final Solution: The time complexity is O(n%).

16 /35



Conclusion and Key Insights

@ The Master Theorem provides an efficient way to analyze
divide-and-conquer recurrences, particularly for polynomial
cost functions.

@ The Generalized Master Theorem extends the standard
version to handle more complex cases where the non-recursive
part grows faster or slower than simple polynomials (e.g.,
logarithmic or exponential terms).

e Understanding the relationship between a, b, d, and f(n) is
crucial for selecting the correct case in either theorem.
@ Both theorems are powerful tools, but always check the

assumptions and the form of the recurrence before applying
them.

@ Practice solving different recurrences to gain a deeper
understanding and strengthen your skills in applying these
theorems.

17/35



Recursive GCD Algorithm

Algorithm RecursiveGCD(a, b)

1: if b =0 then > Base Case
2 return a

3: else > Recursive Step
4 return RecursiveGCD(b,a mod b)

5: end if

18/35



What We Want to Prove

@ The Recursive GCD algorithm correctly computes the greatest
common divisor (GCD) of two numbers a and b.

@ We will use mathematical induction on the value of b to
prove correctness.

19/35



Proof by Induction: Base Case b =0

Base Case: b=10
@ When b = 0, the algorithm returns a.
@ According to the definition of GCD:

GCD(a,0) = a

@ This is true because any number divides 0, and the greatest
divisor of a and 0 is a.

@ Therefore, when b = 0, the algorithm correctly returns a,
satisfying the base case.

20/35



Proof of Correctness: Inductive Hypothesis

Inductive Hypothesis:

@ Assume that for all values b’ < by, the algorithm correctly
computes the GCD of a and b/, i.e.,

RecursiveGCD(a, b') = GCD(a, b’) for any b’ < by.

@ We will now prove that the algorithm works for b = byg.

21/35



Proof by Induction: Inductive Step for b = by

Inductive Step: Prove the algorithm is correct for b = by

@ The algorithm calls:
RecursiveGCD(a, by) = RecursiveGCD(bg,a mod by)
@ By the Euclidean algorithm, we know:
GCD(a, by) = GCD(bg,a mod by)

@ This is a property of the GCD: the GCD of two numbers
doesn't change if the larger number is replaced by its
remainder when divided by the smaller number.

22/35



Inductive Step: Continuation

@ The second argument in the recursive call is a mod by, which
is smaller than by, i.e., a mod by < by.

@ By our inductive hypothesis, we assume that the algorithm
correctly computes the GCD for all values smaller than by.

@ Therefore, RecursiveGCD(bp,a mod bg) correctly computes
GCD(bg,a mod by).

@ Since GCD(a, by) = GCD(bg,a mod by), the recursive call
returns the correct value for GCD(a, bp).

23/35



Conclusion of the Proof

@ By mathematical induction, we have shown that:

o The base case (b = 0) works correctly.
e The inductive step holds, as the recursive call solves a smaller
instance of the problem, and the GCD is computed correctly.

@ Therefore, the Recursive GCD Algorithm is correct for all
values of a and b.

24/35



Recursive Algorithm for Computing a”

Algorithm Power(a, n)

1. procedure POWER(a, n) > a is a non-zero real number,
n is a non-negative integer

2: if n =0 then > Base Case

3: return 1

4: else

5: return a x Power(a, n — 1)

6: end if

7: end procedure

\. J

This algorithm recursively computes a” by reducing the exponent.

25/35



What We Want to Prove

@ We want to prove that the recursive algorithm correctly
computes a" for any non-negative integer n.

@ We will use mathematical induction on n to prove its
correctness.

26/35



Proof by Induction: Base Case n =0

Base Case: n=10
@ When n =0, the algorithm returns 1.
o This is correct because a® = 1 for any non-zero real number a.

@ Therefore, the base case holds: Power(a,0) = 1.

27/35



Inductive Hypothesis

@ Assume that the algorithm correctly computes a* for some
arbitrary non-negative integer k.

o That is, assume Power(a, k) = a*.

@ We will now prove that the algorithm correctly computes ak*1.

28/35



Inductive Step

Inductive Step:
@ When n = k 4+ 1, the algorithm computes:

Power(a, k + 1) = a x Power(a, k)

@ By the inductive hypothesis, we know that Power(a, k) = a.

@ Therefore:
Power(a, k + 1) = a x a¥ = a1

@ Thus, the algorithm correctly computes ak*! when n = k + 1.

29/35



Conclusion of the Proof

@ By mathematical induction, we have shown that:

o The base case (n = 0) holds, as the algorithm returns 1, which
is correct.
e The inductive step holds, as the algorithm correctly computes

ak*t from ak.

@ Therefore, the recursive algorithm correctly computes a” for
any non-negative integer n.

30/35



Recursive Linear Search

Algorithm search(a, i, j, x)

1
2
3:
4

. if a[i] = x then

return | > Found the element at index i
else if i = j then

return -1 > Reached the end of the search range
without finding x

5: else

return search(a, i + 1, j, x) > Continue searching in
the rest of the array
end if

31/35



Proof by Induction: Base Case

Base Case: j —i=1
@ The subarray consists of a single element at index /.

@ The algorithm checks whether a[i] = x:

o If a[i] = x, it returns i, which is correct.
o If a[i] # x, it checks whether i = j, and returns —1, correctly
indicating x is not found.

@ Thus, the algorithm works correctly for subarrays of size 1.

32/35



Proof by Induction: Inductive Hypothesis

Inductive Hypothesis:

@ Assume the algorithm works correctly for all subarrays of size
k, i.e., when j —i = k.

@ That is, for any subarray of size k, the algorithm returns the
correct index if x is found, or —1 if x is not found.

33/35



Proof by Induction: Inductive Step

Inductive Step:
@ Now consider a subarray of size k+1, i.e., when j — /i = k+ 1.

@ The algorithm checks whether a[i] = x:
o If a[i] = x, it returns i, which is correct.
o If a[i] # x, it makes a recursive call to search(a, i+1, j,
x).
@ By the inductive hypothesis, the recursive call works correctly
for the remaining subarray of size k.
@ Therefore, if x is found, the recursive call returns the correct
index; otherwise, it returns —1.

34/35



Conclusion of the Proof

@ By mathematical induction, the recursive linear search
algorithm works correctly for any subarray of size j — i > 1.

@ Therefore, the algorithm correctly finds the element x or
returns —1 if x is not found.

35/35



