CS 2500: Algorithms Lecture 6: Introduction to Recurrence Equations

Shubham Chatterjee

Missouri University of Science and Technology, Department of Computer Science

September 5, 2024

(日)(周)(日)(日)(日)(日)

1/47

- **Definition:** A recurrence equation is a compact notation that defines a sequence by relating each term to one or more preceding terms.
- **Purpose:** Used to analyze recursive algorithms by expressing the running time of a problem in terms of its subproblems.

- Recursive algorithms often call themselves with smaller input sizes.
- To determine the algorithm's efficiency, we analyze how the work is divided and combined, which is captured by a recurrence relation.
- Example applications: Fibonacci sequence, factorial computation, dynamic programming problems.

$$n! = n \times (n-1)!$$

- Base condition: 0! = 1
- This defines how *n*! is calculated recursively.

Recurrence Equation vs. Recurrence Relation

- **Recurrence Equation:** A compact way to express a sequence based on previous terms.
- **Recurrence Relation:** A broader term that can include more complex expressions, equivalent to differential equations in discrete settings.

• Example:

• Recurrence Relation (Factorial):

$$n! = n \times (n-1)!$$

This expresses the factorial as a recursive relationship, defining n! in terms of (n - 1)!.

• Recurrence Equation (Factorial):

$$t_n = t_{n-1} + 1$$

This expresses the factorial sequence directly as a recurrence equation.

Consider the recurrence equation:

$$t_n = t_{n-1} + 2$$

- Initial Condition: $t_0 = 0$
- This generates the sequence: 2, 4, 6, 8, ...
- Changing the initial condition alters the sequence (e.g., $a_0 = 1$ gives 1, 3, 5, 7, ...)

- Initial conditions are necessary to uniquely define the sequence.
- Changing the initial condition can completely alter the sequence generated by a recurrence equation.

- Linear Recurrences: The next term is a linear combination of previous terms.
- Non-linear Recurrences: The next term is a non-linear combination of previous terms.

.

- A linear recurrence equation for a sequence $t_0, t_1, \ldots t_n$ expresses the final term t_n as a linear combination of its previous terms in a polynomial form.
- Example: The recurrence equation of a Fibonacci series can be expressed as:

$$t_n = t_{n-1} + t_{n-2}$$

• In general, linear recurrences are of the form:

$$a_0 \cdot t_n + a_1 \cdot t_{n-1} + \ldots + a_k \cdot t_{n-k} = f(n)$$

where k and a_i are constants, k being the order of the recurrence equation.

イロン 不良 とくほど 不良とう ほ

Based on order:

- First-order recurrence equations
- Second-order recurrence equations
- Higher-order recurrence equations

Based on homogeneity:

- Homogeneous recurrence equations
- Non-homogeneous recurrence equations

イロン 不同 とくほど 不良 とうほ

10/47

- The number of preceding terms used for computing the present term of a sequence is called the **order of recurrence** equations.
- In other words, the order is the difference between the highest and the lowest subscripts of the dependent variable in a recurrence equation.
- Example: For the recurrence equation: t_n = t_{n−1} + t_{n−2}, the order is n − (n − 2) = 2.

• A first-order linear recurrence equation uses one previous term:

$$t_n = c_1 t_{n-1}$$

• A second-order recurrence equation uses two previous terms:

$$t_n = c_1 t_{n-1} + c_2 t_{n-2}$$

Uniqueness of the Solution

- To uniquely define a sequence, the number of initial conditions must match the order of the recurrence equation.
- Why?
 - Each initial condition is required to determine the starting points for the sequence.
 - Without these starting points, the sequence isn't fully determined, leading to multiple possible sequences.

Uniqueness of the Solution: Example

• Consider the Fibonacci sequence:

$$t_n = t_{n-1} + t_{n-2}$$

- This is a second-order recurrence relation.
- To uniquely determine the sequence, we need two initial conditions:

$$t_0=0, \quad t_1=1$$

• Without these initial conditions, the sequence could start with any two numbers, leading to different sequences that all satisfy the same recurrence relation.

Types of Linear Recurrences

Homogeneous vs Non-Homogeneous Linear Recurrences

• Consider the linear recurrence equation:

 $a_0 \cdot t_n + a_1 \cdot t_{n-1} + \ldots a_k \cdot t_{n-k} = f(n)$

• If f(n) = 0, it is called a **homogeneous equation**. If $f(n) \neq 0$, the equation is called **non-homogeneous**.

Homogeneity Test. To determine whether a given linear recurrence is homogeneous or non-homogeneous:

- Substitute all orders of t_n are with zero.
- Check if LHS = RHS.

Examples

- $t_n = t_{n-1} + t_{n-2}$. Substituting t_n and all its factors with zero: 0 = 0 + 0 = 0. So homogeneous equation.
- $t_n = t_{n-1} + (n-3)$. Substituting t_n and t_{n-1} with zero yields: 0 = (n-3). So non-homogeneous equation.

- The non-linear recurrence equation of a sequence
 {t₀, t₁,..., t_n} expresses t_n as a non-linear combination of its
 previous terms.
- In algorithm study, a unique form of non-linear recurrence equations, called **divide-and-conquer recurrences**, is often encountered.

Non-Linear Recurrences

Divide-and-Conquer Recurrences

• The divide-and-conquer recurrence equations are of the following form:

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- a is the number of subproblems,
- *n* is the size of the problem,
- $\frac{n}{b}$ is the size of the subproblem,
- f(n) is the cost of work done for non-recursive calls.

Example. The recurrence equation for merge sort is:

$$T(n)=2T\left(\frac{n}{2}\right)+n$$

- Number of subproblems is 2 at every level.
- Problem size is reduced by a factor of 2.
- *n* amount of work has to be performed to combine the results.

Formulation of Recurrences: Tower of Hanoi

- Classic example of a recursive problem.
- *n* disks of different sizes placed on the first of three pegs.
- Objective: Move all disks from the first peg to the third peg, using the second peg as an auxiliary.
- The rules:
 - Only one disk can be moved at a time.
 - A larger disk cannot be placed on top of a smaller disk.

Recursive Solution for Tower of Hanoi

- The problem has an elegant recursive solution.
- To move n > 1 disks from peg 1 to peg 3:
 - Recursively move n 1 disks from peg 1 to peg 2 (using peg 3 as auxiliary).
 - 2 Move the largest disk directly from peg 1 to peg 3.
 - Recursively move n 1 disks from peg 2 to peg 3 (using peg 1 as auxiliary).
- For n = 1, simply move the disk directly from peg 1 to peg 3.

Recurrence Relation for Tower of Hanoi

- Let *t_n* represent the number of moves required to solve the puzzle with *n* disks.
- The recurrence equation for t_n can be derived as follows:

$$t_n = t_{n-1} + 1 + t_{n-1}$$
 for $n > 1$

• This simplifies to:

$$t_n = 2t_{n-1} + 1$$
 for $n > 1$

• With the initial condition:

$$t_1 = 1$$

20 / 47

イロン 不同 とくほど 不良 とうせい

Understanding the Recurrence Relation

- The relation $t_n = 2t_{n-1} + 1$ captures the recursive nature of the Tower of Hanoi problem.
- Each step involves:
 - **1** Moving n 1 disks twice.
 - 2 Moving the largest disk once.
- As *n* increases, the number of moves required grows exponentially.

Formulation of Recurrences: Complete Graph

- Consider deriving a recurrence relation for a complete graph.
- A complete graph K_n with n vertices has an edge between every pair of vertices.
- From Table 1, we see that the sequence generated is: 0, 1, 3, 6, 10, 15, ...
- This leads to the recurrence:

$$t_n = t_{n-1} + (n-1)$$

Vertices	1	2	3	4	5	6
Edges	0	1	3	6	10	15

Table: Vertices and edges of a complete graph

Formulation of Recurrences: Complete Graph

Verification of the Recurrence Relation

• The sequence generated by this recurrence relation for the number of edges is:

$$0, 1, 3, 6, 10, 15, \ldots$$

• This sequence can be verified by substituting different values of *n* into the recurrence relation:

$$t_1 = t_0 + (1 - 1) = 0 + 0 = 0$$

$$t_2 = t_1 + (2 - 1) = 0 + 1 = 1$$

$$t_3 = t_2 + (3 - 1) = 1 + 2 = 3$$

$$t_4 = t_3 + (4 - 1) = 3 + 3 = 6$$

イロン 不同 とくほど 不良 とうほ

We are going to look at the following techniques for solving recurrence equations:

- Guess-and-Verify method (called "method of substitution" by Cormen in his book "Introduction to Algorithms".)
- Substitution/Iteration method
- 8 Recurrence-tree method
- O Difference/Telescoping method
- Polynomial reduction method
- Master theorem

- This is one of the simplest methods for solving recurrence equations.
- The method involves two phases:
 - Guess: Make an educated guess about the form of the solution.
 - **Verify**: Use mathematical induction to verify that the guessed solution satisfies the recurrence relation.

Example 1: Solve the recurrence equation $t_n = t_{n-1} + 2$ using the guess-and-verify method, with the initial condition $t_0 = 1$. **Solution**:

1. **Guess**: Start by guessing the form of the solution by substituting different values of *n* into the recurrence equation:

$$t_1 = t_0 + 2 = 1 + 2 = 3,$$

$$t_2 = t_1 + 2 = 3 + 2 = 5,$$

$$t_3 = t_2 + 2 = 5 + 2 = 7.$$

The sequence $1, 3, 5, 7, \ldots$ suggests that the solution is of the form 2n + 1.

Example 1: Solve the recurrence equation $t_n = t_{n-1} + 2$ using the guess-and-verify method, with the initial condition $t_0 = 1$. **Solution**:

- 2. **Verify**: Use mathematical induction to verify the guessed solution:
 - Base case: $t_0 = 1 = 2(0) + 1$
 - Inductive hypothesis: Assume $t_n = 2n + 1$ for some *n*.

• Inductive step: $t_{n+1} = t_n + 2 = (2n+1) + 2 = 2(n+1) + 1$ Therefore, the solution is verified as $t_n = 2n + 1$.

Example 2: Solve the recurrence equation $t_n = t_{n-1} + n^2$ using the guess-and-verify method, with the initial condition $t_1 = 1$. **Solution**:

1. **Guess**: Start by substituting different values of *n* into the recurrence equation to identify a pattern:

$$t_1 = 1 = 1^2,$$

$$t_2 = t_1 + 2^2 = 1 + 4 = 5,$$

$$t_3 = t_2 + 3^2 = 5 + 9 = 14,$$

$$t_4 = t_3 + 4^2 = 14 + 16 = 30$$

This suggests that the solution could be

$$t_n = 1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

28 / 47

イロン 不良 とくほど 不良とう ほ

Example 2: Solve the recurrence equation $t_n = t_{n-1} + n^2$ using the guess-and-verify method, with the initial condition $t_1 = 1$. **Solution**:

2. Verify: Prove using mathematical induction that

$$t_n = 1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

イロン 不同 とくほど 不良 とうせい

29 / 47

(Homework)

Example 3: Use the guess-and-verify method to solve the following recurrence equation:

$$T(n) = 3T\left(\frac{n}{2}\right)$$
 with initial condition $T(1) = 1$.

Note that n > 1 and $n = 2^k$. **Solution**: Since *n* is a power of 2 (i.e., n = 2, 4, 8, ...), we can compute:

$$T(1) = 1,$$

$$T(2) = 3T(1) = 3 \times 1 = 3,$$

$$T(4) = 3T(2) = 3 \times 3 = 3^{2},$$

$$T(8) = 3T(4) = 3 \times 3^{2} = 3^{3}$$

Example 3: Use the guess-and-verify method to solve the following recurrence equation:

$$T(n) = 3T\left(\frac{n}{2}\right)$$
 with initial condition $T(1) = 1$.

Note that n > 1 and $n = 2^k$. Solution:

- Guess: Every time n doubles (from 1 to 2, then 4, then 8, etc.), the value of T(n) is multiplied by another factor of 3. Therefore, the power of 3 increases incrementally as n increases. From the pattern above, we observe that the result for T(n) seems to be 3^{log₂ n}, because:
 - When n = 1, $\log_2 n = 0$ and $T(1) = 3^0 = 1$,

• When
$$n = 2$$
, $\log_2 n = 1$ and $T(2) = 3^1 = 3$,

- When n = 4, $\log_2 n = 2$ and $T(4) = 3^2$,
- When n = 8, $\log_2 n = 3$ and $T(8) = 3^3$.

(日)

Example 3: Use the guess-and-verify method to solve the following recurrence equation:

$$T(n) = 3T\left(\frac{n}{2}\right)$$
 with initial condition $T(1) = 1$

Solution:

- 2. **Verify**: Use mathematical induction to verify the guessed solution:
 - **Basis Step**: $T(1) = 3^{\log_2 1} = 3^0 = 1$. Given T(1) = 1, so basis step is true.
 - Induction Hypothesis: Assume $T(k) = 3^{\log_2 k}$ holds for some n = k.
 - **Inductive Step**: Prove it holds for n = 2k:

 $T(2k) = 3T(k) = 3 \times 3^{\log_2 k} = 3^{\log_2 k + 1} = 3^{\log_2 k + \log_2 2} = 3^{\log_2(2k)}$

• Therefore, the guess is correct: $T(n) = 3^{\log_2 n}$.

(ロ) (同) (E) (E) (E) (O)(C)

Example 4: Use the guess-and-verify method to solve the following recurrence equation:

$$T(n) = egin{cases} 0 & ext{if } n = 0 \ 3T(n \div 2) + n & ext{otherwise} \end{cases}$$

- Discontinuous functions such as the floor function (implicit in $n \div 2$) are hard to analyze.
- Our first step is to replace n ÷ 2 by the better behaved "n/2" with a suitable restriction on the set of values of n that we consider initially.

イロン 不同 とくほど 不良 とうせい

$$T(n) = egin{cases} 0 & ext{if } n = 0 \ 3T(n \div 2) + n & ext{otherwise} \end{cases}$$

- It is tempting to restrict *n* to being even since in that case $n \div 2 = n/2$.
- BUT: Recursively dividing an even number by 2 might produce an odd number larger than 1.
 - Starting with an even *n*, each division by 2 reduces the size predictably until an odd number is produced.
 - For example, n = 6:

$$6 \div 2 = 3$$
 (odd number)

- Odd numbers introduce irregular behavior in the recurrence, leading to complexities in analysis.
- Further division of odd numbers by 2 results in non-integer or discontinuous behavior (e.g., 3 ÷ 2 = 1).
- So we restrict *n* to be exact powers of 2.

Tabulating Values of the Recurrence

• We tabulate the values of the recurrence for the first few powers of 2:

n	T(n)		
1	1		
2	5		
4	19		
8	65		
16	211		
32	665		

• Each term is computed from the previous term, e.g., $T(16) = 3 \times T(8) + 16 = 3 \times 65 + 16 = 211.$

• No obvious pattern is visible in the sequence initially.

Finding the Pattern

n	<i>T</i> (<i>n</i>)
1	1
2	$3 \times 1 + 2$
2 ²	$3^2 \times 1 + 3 \times 2 + 2^2$
2 ³	$3^3 \times 1 + 3^2 \times 2 + 3 \times 2^2 + 2^3$
24	$3^4 \times 1 + 3^3 \times 2 + 3^2 \times 2^2 + 3 \times 2^3 + 2^4$
25	$3^5 \times 1 + 3^4 \times 2 + 3^3 \times 2^2 + 3^2 \times 2^3 + 3 \times 2^4 + 2^5$

• Keep more "history" about the value of T(n). For example:

$$T(2)=3\times 1+2$$

This allows us to see a pattern:

$$T(4) = 3 \times T(2) + 4 = 3 \times (3 \times 1 + 2) + 4 = 3^2 \times 1 + 3 \times 2 + 4$$

• Continuing this way:

$$T(2^k) = 3^k \times 1 + 3^{k-1} \times 2 + \dots + 3 \times 2^{k-1} + 2^k$$

Given recurrence:

 $T(2^{k}) = 3^{k} \times 2^{0} + 3^{k-1} \times 2^{1} + 3^{k-2} \times 2^{2} + \dots + 3^{1} \times 2^{k-1} + 3^{0} \times 2^{k}$

• The recurrence involves summing powers of 3 multiplied by powers of 2.

$$T(2^k) = \sum_{i=0}^k 3^{k-i} \times 2^i$$

• This summation is written as the sum of decreasing powers of 3 and increasing powers of 2.

We can factor out 3^k from each term:

$$T(2^k) = 3^k \sum_{i=0}^k \left(\frac{2}{3}\right)^i$$

• This simplifies the expression and makes it easier to recognize the next step.

- The summation $\sum_{i=0}^{k} \left(\frac{2}{3}\right)^{i}$ is a geometric series.
- The sum of the first k + 1 terms of a geometric series is given by:

$$\sum_{i=0}^{k} r^{i} = \frac{1 - r^{k+1}}{1 - r}$$

<ロ> <四> <四> <四> <三</td>

40 / 47

where $r = \frac{2}{3}$.

$$\sum_{i=0}^{k} \left(\frac{2}{3}\right)^{i} = \frac{1 - \left(\frac{2}{3}\right)^{k+1}}{1 - \frac{2}{3}} = 3 \times \left(1 - \left(\frac{2}{3}\right)^{k+1}\right)$$

• We now have the sum of the series in a simplified form.

Substitute the result of the geometric series back into the equation for $T(2^k)$:

$$T(2^k) = 3^k \times \left[3 \times \left(1 - \left(\frac{2}{3}\right)^{k+1}\right)\right]$$

$$T(2^k) = 3^{k+1} \times \left(1 - \left(\frac{2}{3}\right)^{k+1}\right)$$

 $T(2^k) = 3^{k+1} - 2^{k+1}$

Homework: Use mathematical induction to prove that the solution $T(2^k) = 3^{k+1} - 2^{k+1}$ holds for all k.

Handling n When It Is Not a Power of 2

- **Problem:** Solving the recurrence exactly when *n* is not a power of 2 can be difficult.
- Solution: Use asymptotic notation and express T(n) in terms of T(2^k), where k = log₂ n.
- Rewriting the equation:

$$T(n) = T(2^{\log_2 n}) = 3^{1 + \log_2 n} - 2^{1 + \log_2 n} = 3 \cdot 3^{\log_2 n} - 2 \cdot 2^{\log_2 n}$$

• Logarithmic Simplification: Using the property of logarithms ($a^{\log_b x} = x^{\log_b a}, \log_a a = 1$)

$$3^{\log_2 n} = n^{\log_2 3} \quad 2^{\log_2 n} = n^{\log_2 2} = n$$

• Final form of the recurrence relation:

$$T(n)=3n^{\log_2 3}-2n$$

45 / 47

Using conditional asymptotic notation, we conclude that:

 $T(n) \in \Theta(n^{\log_2 3})$ (when *n* is a power of 2)

• Since T(n) is non-decreasing, and $n^{\log_2 3}$ is smooth, we conclude:

 $T(n) \in \Theta(n^{\log_2 3})$ unconditionally.

Homework: $T(n) \in \Theta(n^{\log_2 3})$ holds when T(n) is a non-decreasing function. Use mathematical induction to prove that $T(n) = 3n^{\log_2 3} - 2n$ is a non-decreasing function.