
CS 2500: Algorithms
Lecture 6: Introduction to Recurrence Equations

Shubham Chatterjee

Missouri University of Science and Technology, Department of Computer Science

September 5, 2024

1 / 47



What is a Recurrence Equation?

Definition: A recurrence equation is a compact notation that
defines a sequence by relating each term to one or more
preceding terms.

Purpose: Used to analyze recursive algorithms by expressing
the running time of a problem in terms of its subproblems.

2 / 47



Why Recurrence Equations Matter

Recursive algorithms often call themselves with smaller input
sizes.

To determine the algorithm’s efficiency, we analyze how the
work is divided and combined, which is captured by a
recurrence relation.

Example applications: Fibonacci sequence, factorial
computation, dynamic programming problems.

3 / 47



Example: Factorial Recurrence Relation

n! = n × (n − 1)!

Base condition: 0! = 1

This defines how n! is calculated recursively.

4 / 47



Recurrence Equation vs. Recurrence Relation

Recurrence Equation: A compact way to express a sequence
based on previous terms.

Recurrence Relation: A broader term that can include more
complex expressions, equivalent to differential equations in
discrete settings.

Example:
Recurrence Relation (Factorial):

n! = n × (n − 1)!

This expresses the factorial as a recursive relationship, defining
n! in terms of (n − 1)!.
Recurrence Equation (Factorial):

tn = tn−1 + 1

This expresses the factorial sequence directly as a recurrence
equation.

5 / 47



Example: Simple Recurrence Equation

Consider the recurrence equation:

tn = tn−1 + 2

Initial Condition: t0 = 0

This generates the sequence: 2, 4, 6, 8, ...

Changing the initial condition alters the sequence (e.g.,
a0 = 1 gives 1, 3, 5, 7, ...)

6 / 47



Importance of Initial Conditions

Initial conditions are necessary to uniquely define the
sequence.

Changing the initial condition can completely alter the
sequence generated by a recurrence equation.

7 / 47



Classification of Recurrence Equations

Linear Recurrences: The next term is a linear combination
of previous terms.

Non-linear Recurrences: The next term is a non-linear
combination of previous terms.

8 / 47



Linear Recurrences

A linear recurrence equation for a sequence t0, t1, . . . tn
expresses the final term tn as a linear combination of its
previous terms in a polynomial form.

Example: The recurrence equation of a Fibonacci series can
be expressed as:

tn = tn−1 + tn−2

.

In general, linear recurrences are of the form:

a0 · tn + a1 · tn−1 + . . . ak · tn−k = f (n)

where k and ai are constants, k being the order of the
recurrence equation.

9 / 47



Types of Linear Recurrences

Based on order:
First-order recurrence equations
Second-order recurrence equations
Higher-order recurrence equations

Based on homogeneity:
Homogeneous recurrence equations
Non-homogeneous recurrence equations

10 / 47



Order of Linear Recurrences

The number of preceding terms used for computing the
present term of a sequence is called the order of recurrence
equations.

In other words, the order is the difference between the highest
and the lowest subscripts of the dependent variable in a
recurrence equation.

Example: For the recurrence equation:tn = tn−1 + tn−2, the
order is n − (n − 2) = 2.

11 / 47



Order of Linear Recurrences

A first-order linear recurrence equation uses one previous term:

tn = c1tn−1

A second-order recurrence equation uses two previous terms:

tn = c1tn−1 + c2tn−2

12 / 47



Order of Linear Recurrences

Uniqueness of the Solution

To uniquely define a sequence, the number of initial
conditions must match the order of the recurrence equation.

Why?
Each initial condition is required to determine the starting
points for the sequence.
Without these starting points, the sequence isn’t fully
determined, leading to multiple possible sequences.

13 / 47



Order of Linear Recurrences

Uniqueness of the Solution: Example

Consider the Fibonacci sequence:

tn = tn−1 + tn−2

This is a second-order recurrence relation.

To uniquely determine the sequence, we need two initial
conditions:

t0 = 0, t1 = 1

Without these initial conditions, the sequence could start with
any two numbers, leading to different sequences that all
satisfy the same recurrence relation.

14 / 47



Types of Linear Recurrences

Homogeneous vs Non-Homogeneous Linear Recurrences

Consider the linear recurrence equation:

a0 · tn + a1 · tn−1 + . . . ak · tn−k = f (n)

If f (n) = 0, it is called a homogeneous equation. If
f (n) ̸= 0, the equation is called non-homogeneous.

Homogeneity Test. To determine whether a given linear
recurrence is homogeneous or non-homogeneous:

Substitute all orders of tn are with zero.

Check if LHS = RHS.

Examples

tn = tn−1 + tn−2. Substituting tn and all its factors with zero:
0 = 0 + 0 = 0. So homogeneous equation.

tn = tn−1 + (n − 3). Substituting tn and tn−1 with zero
yields:0 = (n − 3). So non-homogeneous equation.

15 / 47



Non-Linear Recurrences

The non-linear recurrence equation of a sequence
{t0, t1, . . . , tn} expresses tn as a non-linear combination of its
previous terms.

In algorithm study, a unique form of non-linear recurrence
equations, called divide-and-conquer recurrences, is often
encountered.

16 / 47



Non-Linear Recurrences

Divide-and-Conquer Recurrences

The divide-and-conquer recurrence equations are of the
following form:

T (n) = aT
(n
b

)
+ f (n)

a is the number of subproblems,
n is the size of the problem,
n
b is the size of the subproblem,
f (n) is the cost of work done for non-recursive calls.

Example. The recurrence equation for merge sort is:

T (n) = 2T
(n
2

)
+ n

Number of subproblems is 2 at every level.

Problem size is reduced by a factor of 2.

n amount of work has to be performed to combine the results.
17 / 47



Formulation of Recurrences: Tower of Hanoi

Classic example of a recursive problem.

n disks of different sizes placed on the first of three pegs.

Objective: Move all disks from the first peg to the third peg,
using the second peg as an auxiliary.

The rules:
Only one disk can be moved at a time.
A larger disk cannot be placed on top of a smaller disk.

18 / 47



Formulation of Recurrences: Tower of Hanoi

Recursive Solution for Tower of Hanoi

The problem has an elegant recursive solution.

To move n > 1 disks from peg 1 to peg 3:
1 Recursively move n− 1 disks from peg 1 to peg 2 (using peg 3

as auxiliary).
2 Move the largest disk directly from peg 1 to peg 3.
3 Recursively move n− 1 disks from peg 2 to peg 3 (using peg 1

as auxiliary).

For n = 1, simply move the disk directly from peg 1 to peg 3.

19 / 47



Formulation of Recurrences: Tower of Hanoi

Recurrence Relation for Tower of Hanoi

Let tn represent the number of moves required to solve the
puzzle with n disks.

The recurrence equation for tn can be derived as follows:

tn = tn−1 + 1 + tn−1 for n > 1

This simplifies to:

tn = 2tn−1 + 1 for n > 1

With the initial condition:

t1 = 1

20 / 47



Formulation of Recurrences: Tower of Hanoi

Understanding the Recurrence Relation

The relation tn = 2tn−1 + 1 captures the recursive nature of
the Tower of Hanoi problem.

Each step involves:
1 Moving n − 1 disks twice.
2 Moving the largest disk once.

As n increases, the number of moves required grows
exponentially.

21 / 47



Formulation of Recurrences: Complete Graph

Consider deriving a recurrence relation for a complete graph.

A complete graph Kn with n vertices has an edge between
every pair of vertices.

From Table 1, we see that the sequence generated is:
0, 1, 3, 6, 10, 15, . . .

This leads to the recurrence:

tn = tn−1 + (n − 1)

Vertices 1 2 3 4 5 6

Edges 0 1 3 6 10 15

Table: Vertices and edges of a complete graph

22 / 47



Formulation of Recurrences: Complete Graph

Verification of the Recurrence Relation

The sequence generated by this recurrence relation for the
number of edges is:

0, 1, 3, 6, 10, 15, . . .

This sequence can be verified by substituting different values
of n into the recurrence relation:

t1 = t0 + (1− 1) = 0 + 0 = 0

t2 = t1 + (2− 1) = 0 + 1 = 1

t3 = t2 + (3− 1) = 1 + 2 = 3

t4 = t3 + (4− 1) = 3 + 3 = 6

23 / 47



Techniques for Solving Recurrences

We are going to look at the following techniques for solving
recurrence equations:

1 Guess-and-Verify method (called “method of substitution” by
Cormen in his book “Introduction to Algorithms”.)

2 Substitution/Iteration method

3 Recurrence-tree method

4 Difference/Telescoping method

5 Polynomial reduction method

6 Master theorem

24 / 47



Solving Recurrences: Guess-and-Verify

This is one of the simplest methods for solving recurrence
equations.

The method involves two phases:
1 Guess: Make an educated guess about the form of the

solution.
2 Verify: Use mathematical induction to verify that the guessed

solution satisfies the recurrence relation.

25 / 47



Solving Recurrences: Guess-and-Verify

Example 1: Solve the recurrence equation tn = tn−1 + 2 using the
guess-and-verify method, with the initial condition t0 = 1.
Solution:

1. Guess: Start by guessing the form of the solution by
substituting different values of n into the recurrence equation:

t1 = t0 + 2 = 1 + 2 = 3,

t2 = t1 + 2 = 3 + 2 = 5,

t3 = t2 + 2 = 5 + 2 = 7.

The sequence 1, 3, 5, 7, . . . suggests that the solution is of the
form 2n + 1.

26 / 47



Solving Recurrences: Guess-and-Verify

Example 1: Solve the recurrence equation tn = tn−1 + 2 using the
guess-and-verify method, with the initial condition t0 = 1.
Solution:

2. Verify: Use mathematical induction to verify the guessed
solution:

Base case: t0 = 1 = 2(0) + 1
Inductive hypothesis: Assume tn = 2n + 1 for some n.
Inductive step: tn+1 = tn + 2 = (2n + 1) + 2 = 2(n + 1) + 1

Therefore, the solution is verified as tn = 2n + 1.

27 / 47



Solving Recurrences: Guess-and-Verify

Example 2: Solve the recurrence equation tn = tn−1 + n2 using
the guess-and-verify method, with the initial condition t1 = 1.
Solution:

1. Guess: Start by substituting different values of n into the
recurrence equation to identify a pattern:

t1 = 1 = 12,

t2 = t1 + 22 = 1 + 4 = 5,

t3 = t2 + 32 = 5 + 9 = 14,

t4 = t3 + 42 = 14 + 16 = 30.

This suggests that the solution could be

tn = 12 + 22 + 32 + · · ·+ n2 =
n(n + 1)(2n + 1)

6

28 / 47



Solving Recurrences: Guess-and-Verify

Example 2: Solve the recurrence equation tn = tn−1 + n2 using
the guess-and-verify method, with the initial condition t1 = 1.
Solution:

2. Verify: Prove using mathematical induction that

tn = 12 + 22 + · · ·+ n2 =
n(n + 1)(2n + 1)

6

(Homework)

29 / 47



Solving Recurrences: Guess-and-Verify

Example 3: Use the guess-and-verify method to solve the
following recurrence equation:

T (n) = 3T
(n
2

)
with initial condition T (1) = 1.

Note that n > 1 and n = 2k .
Solution: Since n is a power of 2 (i.e., n = 2, 4, 8, . . .), we can
compute:

T (1) = 1,

T (2) = 3T (1) = 3× 1 = 3,

T (4) = 3T (2) = 3× 3 = 32,

T (8) = 3T (4) = 3× 32 = 33

30 / 47



Solving Recurrences: Guess-and-Verify

Example 3: Use the guess-and-verify method to solve the
following recurrence equation:

T (n) = 3T
(n
2

)
with initial condition T (1) = 1.

Note that n > 1 and n = 2k .
Solution:

1. Guess: Every time n doubles (from 1 to 2, then 4, then 8,
etc.), the value of T (n) is multiplied by another factor of 3.
Therefore, the power of 3 increases incrementally as n
increases. From the pattern above, we observe that the result
for T (n) seems to be 3log2 n, because:

When n = 1, log2 n = 0 and T (1) = 30 = 1,
When n = 2, log2 n = 1 and T (2) = 31 = 3,
When n = 4, log2 n = 2 and T (4) = 32,
When n = 8, log2 n = 3 and T (8) = 33.

31 / 47



Solving Recurrences: Guess-and-Verify

Example 3: Use the guess-and-verify method to solve the
following recurrence equation:

T (n) = 3T
(n
2

)
with initial condition T (1) = 1

Solution:

2. Verify: Use mathematical induction to verify the guessed
solution:

Basis Step: T (1) = 3log2 1 = 30 = 1. Given T (1) = 1, so
basis step is true.
Induction Hypothesis: Assume T (k) = 3log2 k holds for some
n = k .
Inductive Step: Prove it holds for n = 2k :

T (2k) = 3T (k) = 3×3log2 k = 3log2 k+1 = 3log2 k+log2 2 = 3log2(2k)

Therefore, the guess is correct: T (n) = 3log2 n.

32 / 47



Solving Recurrences: Guess-and-Verify

Example 4: Use the guess-and-verify method to solve the
following recurrence equation:

T (n) =

{
0 if n = 0

3T (n ÷ 2) + n otherwise

Discontinuous functions such as the floor function (implicit in
n ÷ 2) are hard to analyze.

Our first step is to replace n ÷ 2 by the better behaved “n/2”
with a suitable restriction on the set of values of n that we
consider initially.

33 / 47



Solving Recurrences: Guess-and-Verify

T (n) =

{
0 if n = 0

3T (n ÷ 2) + n otherwise

It is tempting to restrict n to being even since in that case
n ÷ 2 = n/2.
BUT: Recursively dividing an even number by 2 might
produce an odd number larger than 1.

Starting with an even n, each division by 2 reduces the size
predictably until an odd number is produced.
For example, n = 6:

6÷ 2 = 3 (odd number)

Odd numbers introduce irregular behavior in the recurrence,
leading to complexities in analysis.
Further division of odd numbers by 2 results in non-integer or
discontinuous behavior (e.g., 3÷ 2 = 1).

So we restrict n to be exact powers of 2.
34 / 47



Solving Recurrences: Guess-and-Verify

Tabulating Values of the Recurrence

We tabulate the values of the recurrence for the first few
powers of 2:

n T (n)

1 1
2 5
4 19
8 65
16 211
32 665

Each term is computed from the previous term, e.g.,
T (16) = 3× T (8) + 16 = 3× 65 + 16 = 211.

No obvious pattern is visible in the sequence initially.

35 / 47



Solving Recurrences: Guess-and-Verify

Finding the Pattern

Keep more “history” about the value of T (n). For example:

T (2) = 3× 1 + 2

This allows us to see a pattern:

T (4) = 3×T (2)+4 = 3× (3×1+2)+4 = 32×1+3×2+4

Continuing this way:

T (2k) = 3k × 1 + 3k−1 × 2 + · · ·+ 3× 2k−1 + 2k

36 / 47



Step-by-Step Calculation for T (2k)

Given recurrence:

T (2k) = 3k ×20+3k−1×21+3k−2×22+ · · ·+31×2k−1+30×2k

The recurrence involves summing powers of 3 multiplied by
powers of 2.

37 / 47



Step 1: Writing the Recurrence as a Summation

T (2k) =
k∑

i=0

3k−i × 2i

This summation is written as the sum of decreasing powers of
3 and increasing powers of 2.

38 / 47



Step 2: Factoring Out the Common Term

We can factor out 3k from each term:

T (2k) = 3k
k∑

i=0

(
2

3

)i

This simplifies the expression and makes it easier to recognize
the next step.

39 / 47



Step 3: Recognizing the Geometric Series

The summation
∑k

i=0

(
2
3

)i
is a geometric series.

The sum of the first k + 1 terms of a geometric series is given
by:

k∑
i=0

r i =
1− rk+1

1− r

where r = 2
3 .

40 / 47



Step 4: Applying the Geometric Series Formula

k∑
i=0

(
2

3

)i

=
1−

(
2
3

)k+1

1− 2
3

= 3×

(
1−

(
2

3

)k+1
)

We now have the sum of the series in a simplified form.

41 / 47



Step 5: Substituting Back into T (2k)

Substitute the result of the geometric series back into the equation
for T (2k):

T (2k) = 3k ×

[
3×

(
1−

(
2

3

)k+1
)]

42 / 47



Step 6: Simplifying the Expression

T (2k) = 3k+1 ×

(
1−

(
2

3

)k+1
)

T (2k) = 3k+1 − 2k+1

43 / 47



Verification by Mathematical Induction

Homework: Use mathematical induction to prove that the
solution T (2k) = 3k+1 − 2k+1 holds for all k.

44 / 47



Handling n When It Is Not a Power of 2

Problem: Solving the recurrence exactly when n is not a
power of 2 can be difficult.

Solution: Use asymptotic notation and express T (n) in terms
of T (2k), where k = log2 n.

Rewriting the equation:

T (n) = T (2log2 n) = 31+log2 n− 21+log2 n = 3 · 3log2 n− 2 · 2log2 n

Logarithmic Simplification: Using the property of
logarithms (alogb x = x logb a, loga a = 1)

3log2 n = nlog2 3 2log2 n = nlog2 2 = n

Final form of the recurrence relation:

T (n) = 3nlog2 3 − 2n

45 / 47



Asymptotic Conclusion

Using conditional asymptotic notation, we conclude that:

T (n) ∈ Θ(nlog2 3) (when n is a power of 2)

Since T (n) is non-decreasing, and nlog2 3 is smooth, we
conclude:

T (n) ∈ Θ(nlog2 3) unconditionally.

46 / 47



Asymptotic Conclusion

Homework: T (n) ∈ Θ(nlog2 3) holds when T (n) is a
non-decreasing function. Use mathematical induction to prove that
T (n) = 3nlog2 3 − 2n is a non-decreasing function.

47 / 47


