CS 2500: Algorithms

Lecture 6: Introduction to Recurrence Equations

Shubham Chatterjee
Missouri University of Science and Technology, Department of Computer Science

September 5, 2024

1/47

What is a Recurrence Equation?

o Definition: A recurrence equation is a compact notation that
defines a sequence by relating each term to one or more
preceding terms.

@ Purpose: Used to analyze recursive algorithms by expressing
the running time of a problem in terms of its subproblems.

2/47

Why Recurrence Equations Matter

@ Recursive algorithms often call themselves with smaller input
sizes.

@ To determine the algorithm'’s efficiency, we analyze how the
work is divided and combined, which is captured by a
recurrence relation.

@ Example applications: Fibonacci sequence, factorial
computation, dynamic programming problems.

3/47

Example: Factorial Recurrence Relation

nl=nx(n—-1)!

@ Base condition: 0! =1

@ This defines how n! is calculated recursively.

4/47

Recurrence Equation vs. Recurrence Relation

@ Recurrence Equation: A compact way to express a sequence
based on previous terms.

@ Recurrence Relation: A broader term that can include more
complex expressions, equivalent to differential equations in
discrete settings.

o Example:

o Recurrence Relation (Factorial):

nl=nx(n—1)!

This expresses the factorial as a recursive relationship, defining
n!in terms of (n — 1)!.
o Recurrence Equation (Factorial):

th=1th1+1

This expresses the factorial sequence directly as a recurrence
equation.
5/47

Example: Simple Recurrence Equation

Consider the recurrence equation:

th = th—1 +2

o Initial Condition: t; =0
o This generates the sequence: 2, 4, 6, 8, ...

e Changing the initial condition alters the sequence (e.g.,
ag=1gives 1, 3,57, ..)

6/47

Importance of Initial Conditions

@ Initial conditions are necessary to uniquely define the
sequence.

o Changing the initial condition can completely alter the
sequence generated by a recurrence equation.

7/47

Classification of Recurrence Equations

@ Linear Recurrences: The next term is a linear combination
of previous terms.

@ Non-linear Recurrences: The next term is a non-linear
combination of previous terms.

8/47

Linear Recurrences

@ A linear recurrence equation for a sequence ty, t1,... t,
expresses the final term t, as a linear combination of its
previous terms in a polynomial form.

@ Example: The recurrence equation of a Fibonacci series can
be expressed as:

th=th-1+th2
@ In general, linear recurrences are of the form:
ag-th+tar-tho1+...ak th_x =1f(n)

where k and a; are constants, k being the order of the
recurrence equation.

9/47

Types of Linear Recurrences

o Based on order:
e First-order recurrence equations
e Second-order recurrence equations
o Higher-order recurrence equations
o Based on homogeneity:

e Homogeneous recurrence equations
e Non-homogeneous recurrence equations

10/47

Order of Linear Recurrences

@ The number of preceding terms used for computing the
present term of a sequence is called the order of recurrence
equations.

@ In other words, the order is the difference between the highest
and the lowest subscripts of the dependent variable in a
recurrence equation.

@ Example: For the recurrence equation:t, = t,_1 + t,_o, the
orderis n— (n—2) = 2.

11/47

Order of Linear Recurrences

@ A first-order linear recurrence equation uses one previous term:
th = C1th—1
@ A second-order recurrence equation uses two previous terms:

th = C1th—1 + C2th—2

12/47

Order of Linear Recurrences

Uniqueness of the Solution

@ To uniquely define a sequence, the number of initial
conditions must match the order of the recurrence equation.
e Why?
e Each initial condition is required to determine the starting

points for the sequence.
e Without these starting points, the sequence isn't fully
determined, leading to multiple possible sequences.

13/47

Order of Linear Recurrences

Uniqueness of the Solution: Example

@ Consider the Fibonacci sequence:
th = th—1 + th—2

@ This is a second-order recurrence relation.
@ To uniquely determine the sequence, we need two initial
conditions:
tp=0, t1=1
@ Without these initial conditions, the sequence could start with

any two numbers, leading to different sequences that all
satisfy the same recurrence relation.

14 /47

Types of Linear Recurrences

Homogeneous vs Non-Homogeneous Linear Recurrences

@ Consider the linear recurrence equation:

ao-t,,+a1~t,,_1—i-...ak-t,,,k:f(n)
e If f(n) =0, it is called a homogeneous equation. If
f(n) # 0, the equation is called non-homogeneous.
Homogeneity Test. To determine whether a given linear
recurrence is homogeneous or non-homogeneous:
@ Substitute all orders of t, are with zero.
@ Check if LHS = RHS.
Examples
@ t, = th_1 + th—2. Substituting t, and all its factors with zero:
0 =04 0=0. So homogeneous equation.
® t, = tp_1+ (n— 3). Substituting t, and t,_; with zero

yields:0 = (n — 3). So non-homogeneous equation.
15/47

Non-Linear Recurrences

@ The non-linear recurrence equation of a sequence
{to, t1,...,tn} expresses t, as a non-linear combination of its
previous terms.

@ In algorithm study, a unique form of non-linear recurrence
equations, called divide-and-conquer recurrences, is often
encountered.

16 /47

Non-Linear Recurrences

Divide-and-Conquer Recurrences

@ The divide-and-conquer recurrence equations are of the
following form:

T(n) = aT () +f(n)

a is the number of subproblems,
n is the size of the problem,
% is the size of the subproblem,

f(n) is the cost of work done for non-recursive calls.
Example. The recurrence equation for merge sort is:

T(n)=2T (g) tn
@ Number of subproblems is 2 at every level.
@ Problem size is reduced by a factor of 2.
@ n amount of work has to be performed to combine the results.

17/47

Formulation of Recurrences: Tower of Hanoi

Classic example of a recursive problem.

n disks of different sizes placed on the first of three pegs.

Objective: Move all disks from the first peg to the third peg,
using the second peg as an auxiliary.
The rules:

e Only one disk can be moved at a time.
o A larger disk cannot be placed on top of a smaller disk.

A

18/47

Formulation of Recurrences: Tower of Hanoi

Recursive Solution for Tower of Hanoi

@ The problem has an elegant recursive solution.
@ To move n > 1 disks from peg 1 to peg 3:
© Recursively move n — 1 disks from peg 1 to peg 2 (using peg 3
as auxiliary).
© Move the largest disk directly from peg 1 to peg 3.
© Recursively move n — 1 disks from peg 2 to peg 3 (using peg 1
as auxiliary).

@ For n =1, simply move the disk directly from peg 1 to peg 3.

19/47

Formulation of Recurrences: Tower of Hanoi

Recurrence Relation for Tower of Hanoi

o Let t, represent the number of moves required to solve the
puzzle with n disks.

@ The recurrence equation for t, can be derived as follows:
th=th—1+1+t,—1 forn>1
@ This simplifies to:
th=2th.1+1forn>1

@ With the initial condition:

20/47

Formulation of Recurrences: Tower of Hanoi

Understanding the Recurrence Relation
@ The relation t, = 2t,_1 + 1 captures the recursive nature of
the Tower of Hanoi problem.
@ Each step involves:

@ Moving n — 1 disks twice.
@ Moving the largest disk once.

@ As n increases, the number of moves required grows
exponentially.

21/47

Formulation of Recurrences: Complete Graph

e Consider deriving a recurrence relation for a complete graph.

@ A complete graph K, with n vertices has an edge between
every pair of vertices.

@ From Table 1, we see that the sequence generated is:
0,1,3,6,10,15,...
@ This leads to the recurrence:

th=thp—1+(n—1)

Vertices 1 2 3 4 5 6
Edges 0 1 3 6 10 15

Table: Vertices and edges of a complete graph

22/47

Formulation of Recurrences: Complete Graph

Verification of the Recurrence Relation

@ The sequence generated by this recurrence relation for the
number of edges is:

0,1,3,6,10,15, ...

@ This sequence can be verified by substituting different values
of n into the recurrence relation:

h=to+(1-1)=0+0=0
bh=t+(2-1) +1=1
)
1)

ts3=tb+(B3-1)=1+2=3

th=t;+(4—1)=3+3=6

23 /47

Techniques for Solving Recurrences

We are going to look at the following techniques for solving
recurrence equations:

@ Guess-and-Verify method (called “method of substitution” by
Cormen in his book “Introduction to Algorithms".)

Substitution/Iteration method

Recurrence-tree method

2]

o

© Difference/Telescoping method
© Polynomial reduction method
o

Master theorem

24 /47

Solving Recurrences: Guess-and-Verify

@ This is one of the simplest methods for solving recurrence
equations.
@ The method involves two phases:

@ Guess: Make an educated guess about the form of the
solution.

@ Verify: Use mathematical induction to verify that the guessed
solution satisfies the recurrence relation.

25 /47

Solving Recurrences: Guess-and-Verify

Example 1: Solve the recurrence equation t, = t,_1 + 2 using the
guess-and-verify method, with the initial condition t; = 1.
Solution:

1. Guess: Start by guessing the form of the solution by
substituting different values of n into the recurrence equation:

t1:t0+2:1+2:3,
bh=t+2=3+2=25,
3=t +2=542=17.

The sequence 1,3,5,7, ... suggests that the solution is of the
form 2n+ 1.

26 /47

Solving Recurrences: Guess-and-Verify

Example 1: Solve the recurrence equation t, = t,_1 + 2 using the
guess-and-verify method, with the initial condition ty = 1.
Solution:
2. Verify: Use mathematical induction to verify the guessed
solution:
o Base case: tp=1=2(0)+1
e Inductive hypothesis: Assume t, = 2n+ 1 for some n.
o Inductive step: t,y1 =t, +2=(2n+1)+2=2(n+1)+1
Therefore, the solution is verified as t, = 2n + 1.

27 /47

Solving Recurrences: Guess-and-Verify

Example 2: Solve the recurrence equation t, = t,_1 + n? using
the guess-and-verify method, with the initial condition t; = 1.
Solution:

1. Guess: Start by substituting different values of n into the
recurrence equation to identify a pattern:
1 =1=1°
th=1t +2°=1+4=5,
t3=1t+32=5+9 =14,
ty = t3 + 4% = 14 + 16 = 30.

This suggests that the solution could be

(n+1)(2n+1)
6

th=124+224+32 4. 42 ="

28 /47

Solving Recurrences: Guess-and-Verify

Example 2: Solve the recurrence equation t, = t,_1 + n° using
the guess-and-verify method, with the initial condition t; = 1.
Solution:

2. Verify: Prove using mathematical induction that

1)(2n+1
P S S S G)6(n+)

(Homework)

29 /47

Solving Recurrences: Guess-and-Verify

Example 3: Use the guess-and-verify method to solve the
following recurrence equation:

T00::37'<g> with initial condition T(1) = 1.

Note that n > 1 and n = 2.
Solution: Since n is a power of 2 (i.e., n=2,4,8,...), we can

compute:
T(1) =1,
T(2)=3T(1)=3x1=3,
T(4)=3T(2)=3x3=3°
T(8)=3T(4) =3x32=33

30/47

Solving Recurrences: Guess-and-Verify

Example 3: Use the guess-and-verify method to solve the
following recurrence equation:

T(n)=3T (g) with initial condition T(1) = 1.

Note that n > 1 and n = 2k.
Solution:

1. Guess: Every time n doubles (from 1 to 2, then 4, then 8,
etc.), the value of T(n) is multiplied by another factor of 3.
Therefore, the power of 3 increases incrementally as n
increases. From the pattern above, we observe that the result
for T(n) seems to be 3'°82" because:

When n=1, log,n=0and T(1) =3%° =1,

When n =2, log,n=1and T(2) =3 =3,

When n=4, log,n=2 and T(4)—32

When n =38, log,n=3and T(8) =

31/47

Solving Recurrences: Guess-and-Verify

Example 3: Use the guess-and-verify method to solve the
following recurrence equation:

T(n)=3T (g) with initial condition T(1) = 1

Solution:
2. Verify: Use mathematical induction to verify the guessed
solution:

o Basis Step: T(1) =3"8! =3%=1. Given T(1) =1, so
basis step is true.

o Induction Hypothesis: Assume T (k) = 3°%2% holds for some
n=k.

o Inductive Step: Prove it holds for n = 2k:

T(2k) _ 3T(k) — 3><3|c>g2 k _ 3|c)g2 k+1 _ ?)Iog2 k+log, 2 _ 3|og2(2k)

o Therefore, the guess is correct: T(n) = 30827,

32/47

Solving Recurrences: Guess-and-Verify

Example 4: Use the guess-and-verify method to solve the
following recurrence equation:

T(n):{o ifn=0

3T(n=+2)+n otherwise

e Discontinuous functions such as the floor function (implicit in
n = 2) are hard to analyze.

@ Our first step is to replace n + 2 by the better behaved “n/2"
with a suitable restriction on the set of values of n that we
consider initially.

33/47

Solving Recurrences: Guess-and-Verify

T(n)_{o ifn=0

3T(n=+2)+n otherwise

@ It is tempting to restrict n to being even since in that case
n+2=n/2.
@ BUT: Recursively dividing an even number by 2 might
produce an odd number larger than 1.
e Starting with an even n, each division by 2 reduces the size
predictably until an odd number is produced.
o For example, n = 6:

6+2=3 (odd number)

e Odd numbers introduce irregular behavior in the recurrence,
leading to complexities in analysis.
o Further division of odd numbers by 2 results in non-integer or
discontinuous behavior (e.g., 3+2=1).
@ So we restrict n to be exact powers of 2.

34 /47

Solving Recurrences: Guess-and-Verify

Tabulating Values of the Recurrence
@ We tabulate the values of the recurrence for the first few

powers of 2:

n | T(n)
1 1

2 5

4 19
8 65
16 | 211
32 | 665

@ Each term is computed from the previous term, e.g.,
T(16) =3x T(8)+ 16 =3 x 65+ 16 = 211.

@ No obvious pattern is visible in the sequence initially.

35/47

Solving Recurrences: Guess-and-Verify

Finding the Pattern

n Tin)
1 1
2 Ixl+2

2 Fx14+3x2+ 2

23 Px1+3Px2+3x224+28

24 w1+ x2+32x2243x23 4+ 24

25 Pl +3Wx2+F 224325 324405

@ Keep more “history” about the value of T(n). For example:
T(2)=3x1+2
@ This allows us to see a pattern:
T(4)=3xT(2Q)+4=3x(3x1+2)+4=3>x14+3x2+4
e Continuing this way:

T(2k):3k><1—|—3k_1x2+...+3x2k—1+2k

36/47

Step-by-Step Calculation for T(2)

Given recurrence:
T(2K) =3k x 20 4 3k"1 ot 4 3k=2 02 ... 1 3b s k=1 1 30 ok

@ The recurrence involves summing powers of 3 multiplied by
powers of 2.

37/47

Step 1: Writing the Recurrence as a Summation

k
T(2) =) 3 x2
i=0

@ This summation is written as the sum of decreasing powers of
3 and increasing powers of 2.

38/47

Step 2: Factoring Out the Common Term

We can factor out 3% from each term:

T(2%) :3k2k: <§>:

i=0

@ This simplifies the expression and makes it easier to recognize
the next step.

39/47

Step 3: Recognizing the Geometric Series

o The summation 3% o (2)" is a geometric series.

@ The sum of the first k + 1 terms of a geometric series is given

by:
k 1 — rktl
Z 1-r

where r =

WIN

40 /47

Step 4: Applying the Geometric Series Formula

> (3) -5 (- ()7

@ We now have the sum of the series in a simplified form.

41/47

Step 5: Substituting Back into T(2)

Substitute the result of the geometric series back into the equation

for T(2):
T(2%) =3k x [3 X (1 — <§>k+l>]

42/47

Step 6: Simplifying the Expression

T(2K) = 3k+1 « (1 B (g) k+1>

T(2k) — 3k+1 o 2k+1

43 /47

Verification by Mathematical Induction

Homework: Use mathematical induction to prove that the
solution T(2K) = 3k+1 — 2k+1 holds for all k.

44/ 47

Handling n When It Is Not a Power of 2

@ Problem: Solving the recurrence exactly when n is not a
power of 2 can be difficult.

@ Solution: Use asymptotic notation and express T(n) in terms
of T(2%), where k = log, n.

@ Rewriting the equation:
T(n) _ T(2|og2 n) _ 31+|og2 n__ 21+Iog2 n_3. 3|og2 n_o, 2|og2 n

o Logarithmic Simplification: Using the property of
logarithms (a'°85* = x'°852 log_ a2 = 1)

3|og2 n_ nlog23 2|og2 n_ nlog22 —n

@ Final form of the recurrence relation:
T(n) = 3n"823% _2p

45 /47

Asymptotic Conclusion

@ Using conditional asymptotic notation, we conclude that:

T(n) € ©(n'°823) (when n is a power of 2)

3

@ Since T(n) is non-decreasing, and n'°823 is smooth, we

conclude:

T(n) € ©(n'®23) unconditionally.

46 /47

Asymptotic Conclusion

Homework: T(n) € ©(n'°823) holds when T(n) is a
non-decreasing function. Use mathematical induction to prove that
T(n) = 3n'°&23 — 2n is a non-decreasing function.

47 /47

