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Mathematical Induction: Infinite Ladder Example

Suppose we have an infinite ladder.

We want to know whether we can
reach every step on this ladder.

We know two things:
1 We can reach the first rung of

the ladder.
2 If we can reach a particular rung,

we can reach the next rung.

Can we conclude that we can
reach every rung?
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Mathematical Induction: Infinite Ladder Example

By (1), we can reach the first rung
of the ladder.

Since we can reach the first rung,
by (2), we can reach the second
rung.

Continuing in this way:

We can reach the third rung, the
fourth rung, and so on.
For example, after 100 uses of
(2), we know that we can reach
the 101st rung.
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Mathematical Induction: Infinite Ladder Example

Can We Reach Every Rung?

Yes, we can reach every rung of the
infinite ladder.

This can be verified using an
important proof technique called
mathematical induction.

We can show that P(n) is true for
every positive integer n.

Where P(n) is the statement that
we can reach the nth rung of the
ladder.
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Importance of Mathematical Induction

Mathematical induction is a crucial
proof technique for assertions like
this.

It is extensively used to prove
results about:

Complexity of algorithms.
Correctness of computer
programs.
Theorems about graphs and
trees.
Various identities and
inequalities.
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Mathematical Induction: General Concept

Mathematical induction can be used to prove statements that
assert that P(n) is true for all positive integers n.

P(n) is a propositional function.

Propositional function: a statement or expression that contains
one or more variables and becomes a proposition when the
variables are replaced by specific values.
Example: P(x): x is an even number.

If x = 1, then P(x) is true.
If x = 3, then P(x) is false.
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Principle of Mathematical Induction

To prove that P(n) is true for all positive integers n, we complete
two steps:

Basis Step: We verify that P(1) is true.

Inductive Step: Show that for all positive integers k , if P(k)
is true, then P(k + 1) is true.
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Inductive Step in Detail

To complete the inductive step, assume that P(k) is true for
an arbitrary positive integer k.

Show that under this assumption, P(k + 1) must also be true.

The assumption that P(k) is true is called the inductive
hypothesis.

Once both steps are complete, we have shown that P(n) is
true for all positive integers n.

This means ∀n,P(n) is true where the quantification is over
the set of positive integers.
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Rule of Inference for Mathematical Induction

Expressed as a rule of inference, this proof technique can be stated
as:

(P(1) ∧ ∀k(P(k) → P(k + 1))) → ∀n P(n)

when the domain is the set of positive integers.

Mathematical induction is a critical proof technique used in
many areas of mathematics and computer science.
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Remark on Mathematical Induction

In a proof by mathematical induction, it is not assumed that
P(k) is true for all positive integers.

It is only shown that if it is assumed that P(k) is true, then
P(k + 1) is also true.

Thus, a proof by mathematical induction is not a case of
begging the question or circular reasoning.
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Why Mathematical Induction is Valid

The validity of mathematical induction comes from the
well-ordering property of the set of positive integers.

Well-Ordering Property: Every nonempty subset of the set
of positive integers has a least element.

Example:

Consider the subset S = {n ∈ Z+ | n ≥ 3}.
Explicitly, S = {3, 4, 5, 6, 7, . . . }.
According to the well-ordering property, S must have a least
element.

The least element in this subset S is 3.
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Why Mathematical Induction is Valid

Suppose P(1) is true, and the proposition P(k) → P(k + 1) is
true for all positive integers k .

To show P(n) is true for all positive integers n, assume there
is at least one positive integer for which P(n) is false.
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Why Assume P(n) is False?

The assumption that P(n) is false for some n is a technique in
proof by contradiction.

Goal: Prove that P(n) is true for all positive integers n.

Strategy: Assume the opposite of what you want to prove.

13 / 82



Steps of the Contradiction

Step 1: Assume the Opposite
Assume there is at least one positive integer n for which P(n)
is false.
Define S as the set of all positive integers where P(n) is false:

S = {n ∈ Z+ | P(n) is false}

Because we assumed that P(n) is false for some positive
integer n, the set S must contain at least one element.
Therefore, S is non-empty.

Step 2: Well-Ordering Property
The set S has a least element, say m.
m is the smallest positive integer for which P(m) is false.
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Analyzing the Situation

m cannot be 1 because P(1) is true by the basis step.

Since m is greater than 1, m − 1 must be a positive integer.

P(m − 1) must be true because m is the smallest element in
S .
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Inductive Hypothesis

Given that P(m − 1) is true, and using the inductive step
P(k) → P(k + 1):

We conclude that P(m) must also be true.

Contradiction: This conclusion contradicts the assumption
that P(m) is false.
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Conclusion

Since the assumption leads to a contradiction, the original
assumption must be false.

Therefore, P(n) must be true for all positive integers n.
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Example 1: Sum of the First n Positive Integers

Statement of the Problem:

Prove that if n is a positive integer, then

1 + 2 + · · ·+ n =
n(n + 1)

2
.

Let P(n) be the proposition that the sum of the first n

positive integers is n(n+1)
2 .

We will prove P(n) using mathematical induction.
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Example 1: Sum of the First n Positive Integers

Steps of the Induction Proof

Show that P(1) is true (Basis Step).

Show that P(k) implies P(k + 1) for all k ≥ 1 (Inductive
Step).
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Example 1: Sum of the First n Positive Integers

Basis Step

P(1) is the statement:

1 =
1(1 + 1)

2

The left-hand side is 1 (the sum of the first positive integer).

The right-hand side is also 1:

1(2)

2
=

2

2
= 1.

Thus, P(1) is true.
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Example 1: Sum of the First n Positive Integers

Inductive Step: Statement

Assume that P(k) is true for some arbitrary positive integer k .

That is, assume:

1 + 2 + · · ·+ k =
k(k + 1)

2
.

We must show that P(k + 1) is true, which means proving:

1 + 2 + · · ·+ k + (k + 1) =
(k + 1)(k + 2)

2
.
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Example 1: Sum of the First n Positive Integers

Inductive Step: Proof

Starting with the inductive hypothesis:

1 + 2 + · · ·+ k =
k(k + 1)

2
,

Add (k + 1) to both sides:

1 + 2 + · · ·+ k + (k + 1) =
k(k + 1)

2
+ (k + 1).
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Example 1: Sum of the First n Positive Integers

Simplifying the Expression

Factor (k + 1) out of the right-hand side:

k(k + 1)

2
+ (k + 1) =

k(k + 1) + 2(k + 1)

2
.

Simplify the expression:

(k + 1)(k + 2)

2
.

This shows that P(k + 1) is true.
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Example 1: Sum of the First n Positive Integers

Conclusion

We have shown that P(1) is true (Basis Step).

We have shown that P(k) implies P(k + 1) (Inductive Step).

By mathematical induction, P(n) is true for all positive
integers n.

Therefore, we have proven that:

1 + 2 + · · ·+ n =
n(n + 1)

2

for all positive integers n.
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Example 2: Sum of the First n Positive Odd Integers

Problem Statement

Conjecture a formula for the sum of the first n positive odd
integers.

The sums for n = 1, 2, 3, 4, 5 are:

1 = 1, 1 + 3 = 4, 1 + 3 + 5 = 9,

1 + 3 + 5 + 7 = 16, 1 + 3 + 5 + 7 + 9 = 25.

Conjecture: The sum of the first n positive odd integers is n2.

Formula: 1 + 3 + 5 + · · ·+ (2n − 1) = n2.
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Example 2: Sum of the First n Positive Odd Integers

Steps of the Induction Proof

Let P(n) denote the proposition that the sum of the first n
positive odd integers is n2.

We will prove P(n) using mathematical induction:
1 Basis Step: Show that P(1) is true.
2 Inductive Step: Show that P(k) → P(k + 1) is true for all

k ≥ 1.
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Example 2: Sum of the First n Positive Odd Integers

Basis Step

P(1) states that the sum of the first one positive odd integer
is 12 = 1.

This is true because the sum is indeed 1.

Therefore, P(1) is true.
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Example 2: Sum of the First n Positive Odd Integers

Inductive Step: Statement

Assume P(k) is true for some arbitrary positive integer k .

That is, assume:

1 + 3 + 5 + · · ·+ (2k − 1) = k2.

We must show that P(k + 1) is true:

1 + 3 + 5 + · · ·+ (2k − 1) + (2k + 1) = (k + 1)2.

28 / 82



Example 2: Sum of the First n Positive Odd Integers

Inductive Step: Proof

Starting with the inductive hypothesis:

1 + 3 + 5 + · · ·+ (2k − 1) = k2,

Add (2k + 1) to both sides:

1 + 3 + 5 + · · ·+ (2k − 1) + (2k + 1) = k2 + (2k + 1).
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Example 2: Sum of the First n Positive Odd Integers

Simplifying the Expression

Simplify the right-hand side:

k2 + 2k + 1 = (k + 1)2.

This shows that P(k + 1) follows from P(k).

Therefore, P(k + 1) is true.
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Example 2: Sum of the First n Positive Odd Integers

Conclusion

We have shown that P(1) is true (Basis Step).

We have shown that P(k) → P(k + 1) (Inductive Step).

By mathematical induction, P(n) is true for all positive
integers n.

Therefore, we have proven that:

1 + 3 + 5 + · · ·+ (2n − 1) = n2

for all positive integers n.
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Example 3: Sum of Powers of 2

Problem Statement

Use mathematical induction to prove the following formula:

1 + 2 + 22 + · · ·+ 2n = 2n+1 − 1

for all nonnegative integers n.

Let P(n) be the proposition that
1 + 2 + 22 + · · ·+ 2n = 2n+1 − 1.
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Example 3: Sum of Powers of 2

Steps of the Induction Proof

We will prove P(n) using mathematical induction:
1 Basis Step: Show that P(0) is true.
2 Inductive Step: Show that P(k) → P(k + 1) is true for all

k ≥ 0.
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Example 3: Sum of Powers of 2

Basis Step

P(0) states that:

1 = 20+1 − 1 = 21 − 1 = 1.

This is true, so the basis step is complete.
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Example 3: Sum of Powers of 2

Inductive Step: Statement

Assume P(k) is true for some arbitrary nonnegative integer k.

That is, assume:

1 + 2 + 22 + · · ·+ 2k = 2k+1 − 1.

We must show that P(k + 1) is true:

1 + 2 + 22 + · · ·+ 2k + 2k+1 = 2(k+1)+1 − 1 = 2k+2 − 1.
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Example 3: Sum of Powers of 2

Inductive Step: Proof

Start with the inductive hypothesis:

1 + 2 + 22 + · · ·+ 2k = 2k+1 − 1.

Add 2k+1 to both sides:

1 + 2 + 22 + · · ·+ 2k + 2k+1 = (2k+1 − 1) + 2k+1.
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Example 3: Sum of Powers of 2

Simplifying the Expression

Simplify the right-hand side:

(2k+1 − 1) + 2k+1 = 2 · 2k+1 − 1 = 2k+2 − 1.

This shows that P(k + 1) follows from P(k).

Therefore, P(k + 1) is true.
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Example 3: Sum of Powers of 2

Conclusion

We have shown that P(0) is true (Basis Step).

We have shown that P(k) → P(k + 1) (Inductive Step).

By mathematical induction, P(n) is true for all nonnegative
integers n.

Therefore, we have proven that:

1 + 2 + 22 + · · ·+ 2n = 2n+1 − 1

for all nonnegative integers n.
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Example 4: Proving n < 2n for All Positive Integers n

Problem Statement

Use mathematical induction to prove the inequality:

n < 2n

for all positive integers n.

Let P(n) be the proposition that n < 2n.
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Example 4: Proving n < 2n for All Positive Integers n

Steps of the Induction Proof

We will prove P(n) using mathematical induction:
1 Basis Step: Show that P(1) is true.
2 Inductive Step: Show that P(k) → P(k + 1) is true for all

k ≥ 1.

40 / 82



Example 4: Proving n < 2n for All Positive Integers n

Basis Step

P(1) states that:
1 < 21 = 2.

This is true, so the basis step is complete.
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Example 4: Proving n < 2n for All Positive Integers n

Inductive Step: Statement

Assume P(k) is true for some arbitrary positive integer k .

That is, assume:
k < 2k .

We must show that P(k + 1) is true:

k + 1 < 2k+1.
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Example 4: Proving n < 2n for All Positive Integers n

Inductive Step: Proof

Start with the inductive hypothesis:

k < 2k .

Add 1 to both sides:

k + 1 < 2k + 1.

Note that 1 ≤ 2k , so:

2k + 1 ≤ 2k + 2k = 2 · 2k = 2k+1.
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Example 4: Proving n < 2n for All Positive Integers n

Conclusion

Therefore, k + 1 < 2k+1, which shows that P(k + 1) is true.

The induction step is complete.

By mathematical induction, P(n) is true for all positive
integers n.

Therefore, we have proven that:

n < 2n

for all positive integers n.
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Example 5: Proving 2n < n! for All Integers n ≥ 4

Problem Statement

Use mathematical induction to prove that:

2n < n!

for every integer n with n ≥ 4.

Let P(n) be the proposition that 2n < n!.
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Example 5: Proving 2n < n! for All Integers n ≥ 4

Basis Step

Since the inequality is false for n = 1, 2, 3, we begin with P(4).

P(4) states that:
24 = 16 < 24 = 4!

This is true, so the basis step is complete.
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Example 5: Proving 2n < n! for All Integers n ≥ 4

Inductive Step: Statement

Assume P(k) is true for some arbitrary integer k ≥ 4.

That is, assume:
2k < k!.

We must show that P(k + 1) is true:

2k+1 < (k + 1)!.
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Example 5: Proving 2n < n! for All Integers n ≥ 4

Inductive Step: Proof

Start with the definition of exponent:

2k+1 = 2 · 2k .

Apply the inductive hypothesis:

2k+1 < 2 · k!.

Since 2 < k + 1 for k ≥ 4:

2 · k! < (k + 1) · k! = (k + 1)!.
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Example 5: Proving 2n < n! for All Integers n ≥ 4

Conclusion

This shows that P(k + 1) is true when P(k) is true.

The induction step is complete.

By mathematical induction, P(n) is true for all integers n ≥ 4.

Therefore, we have proven that:

2n < n!

for all integers n ≥ 4.
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Example 6: Proving n3 − n is Divisible by 3

Problem Statement

Use mathematical induction to prove that:

n3 − n is divisible by 3

for all positive integers n.

Let P(n) be the proposition that n3 − n is divisible by 3.
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Example 6: Proving n3 − n is Divisible by 3

Basis Step

P(1) states that:
13 − 1 = 0,

which is divisible by 3.

Therefore, P(1) is true, completing the basis step.
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Example 6: Proving n3 − n is Divisible by 3

Inductive Step: Statement

Assume P(k) is true for some arbitrary positive integer k .

That is, assume:

k3 − k is divisible by 3.

We must show that P(k + 1) is true:

(k + 1)3 − (k + 1) is divisible by 3.
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Example 6: Proving n3 − n is Divisible by 3

Inductive Step: Proof

Expand (k + 1)3 − (k + 1):

(k + 1)3 − (k + 1) = (k3 + 3k2 + 3k + 1)− (k + 1).

Simplify the expression:

= (k3 − k) + 3(k2 + k).
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Example 6: Proving n3 − n is Divisible by 3

Conclusion

By the inductive hypothesis, k3 − k is divisible by 3.

The second term, 3(k2 + k), is clearly divisible by 3.

Therefore, (k + 1)3 − (k + 1) is divisible by 3, completing the
inductive step.

By mathematical induction, P(n) is true for all positive
integers n.
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Example 7: Proving 7n+2 + 82n+1 is Divisible by 57

Problem Statement

Use mathematical induction to prove that:

7n+2 + 82n+1 is divisible by 57

for all nonnegative integers n.

Let P(n) be the proposition that 7n+2 + 82n+1 is divisible by
57.
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Example 7: Proving 7n+2 + 82n+1 is Divisible by 57

Basis Step

P(0) states that:

70+2 + 82·0+1 = 72 + 81 = 49 + 8 = 57,

which is divisible by 57.

Therefore, P(0) is true, completing the basis step.
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Example 7: Proving 7n+2 + 82n+1 is Divisible by 57

Inductive Step: Statement

Assume P(k) is true for some arbitrary nonnegative integer k.

That is, assume:

7k+2 + 82k+1 is divisible by 57.

We must show that P(k + 1) is true:

7(k+1)+2 + 82(k+1)+1 = 7k+3 + 82k+3 is divisible by 57.
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Example 7: Proving 7n+2 + 82n+1 is Divisible by 57

Inductive Step: Proof

Start with:

7k+3 + 82k+3 = 7 · 7k+2 + 82 · 82k+1.

Recognize that:
82 = 64 = 57 + 7.

Substituting:

7 · 7k+2 + 64 · 82k+1 = 7(7k+2 + 82k+1) + 57 · 82k+1.
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Example 7: Proving 7n+2 + 82n+1 is Divisible by 57

Conclusion

By the inductive hypothesis, 7k+2 + 82k+1 is divisible by 57.

The second term, 57 · 82k+1, is clearly divisible by 57.

Therefore, 7k+3 + 82k+3 is divisible by 57, completing the
inductive step.

By mathematical induction, P(n) is true for all nonnegative
integers n.
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Example 8: Proving a Set with n Elements has 2n Subsets

Problem Statement

Use mathematical induction to prove that a set with n
elements has 2n subsets.

Let P(n) be the proposition that a set with n elements has 2n

subsets.
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Example 8: Proving a Set with n Elements has 2n Subsets

Basis Step

P(0) is true because a set with zero elements, the empty set,
has exactly 20 = 1 subset (itself).

Therefore, P(0) is true, completing the basis step.
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Example 8: Proving a Set with n Elements has 2n Subsets

Inductive Step: Statement

Assume P(k) is true for some arbitrary non-negative integer k .

That is, assume:

A set with k elements has 2k subsets.

We must show that P(k + 1) is true:

A set with k + 1 elements has 2k+1 subsets.
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Example 8: Proving a Set with n Elements has 2n Subsets

Inductive Step: Proof

Let T be a set with k + 1 elements.

We can write T = S ∪ {a}, where S is a set with k elements.

Each subset X of S can be expanded to two subsets of T : X
and X ∪ {a}.
Therefore, there are 2× 2k = 2k+1 subsets of T .
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Example 8: Proving a Set with n Elements has 2n Subsets

Conclusion

This shows that P(k + 1) is true when P(k) is true.

The induction step is complete.

By mathematical induction, P(n) is true for all nonnegative
integers n.

Therefore, we have proven that a set with n elements has 2n

subsets.
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Example 9: Generalization of De Morgan’s Law

Problem Statement

Use mathematical induction to prove the following
generalization of De Morgan’s law:

n⋂
j=1

Aj =
n⋃

j=1

Aj

whenever A1,A2, . . . ,An are subsets of a universal set U and
n ≥ 2.

Let P(n) be the identity for n sets.
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Example 9: Generalization of De Morgan’s Law

Basis Step

The statement P(2) asserts that:

A1 ∩ A2 = A1 ∪ A2.

This is one of De Morgan’s laws which we know to be true.

Therefore, P(2) is true, completing the basis step.
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Example 9: Generalization of De Morgan’s Law

Inductive Step: Statement

Assume P(k) is true for some arbitrary integer k ≥ 2.

That is, assume:
k⋂

j=1

Aj =
k⋃

j=1

Aj .

We must show that P(k + 1) is true:

k+1⋂
j=1

Aj =
k+1⋃
j=1

Aj .
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Example 9: Generalization of De Morgan’s Law

Inductive Step: Proof
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Example 9: Generalization of De Morgan’s Law

Conclusion

This shows that P(k + 1) is true when P(k) is true.

The induction step is complete.

By mathematical induction, P(n) is true for all integers n ≥ 2.

Therefore, we have proven that:

n⋂
j=1

Aj =
n⋃

j=1

Aj

for all n ≥ 2.
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Example 10: Proving the Set Identity

Problem Statement

Prove that if A1,A2, . . . ,An and B are sets, then:

(A1∩A2∩· · ·∩An)∪B = (A1∪B)∩ (A2∪B)∩· · ·∩ (An∪B).

Let P(n) denote this identity for n sets A1,A2, . . . ,An.
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Example 10: Proving the Set Identity

Basis Step

For n = 1, the statement is:

(A1) ∪ B = (A1 ∪ B).

This is trivially true, as both sides are the same.

Therefore, P(1) is true, completing the basis step.
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Example 10: Proving the Set Identity

Inductive Step: Statement

Assume P(k) is true for some arbitrary positive integer k .

That is, assume:

(A1∩A2∩· · ·∩Ak)∪B = (A1∪B)∩ (A2∪B)∩· · ·∩ (Ak ∪B).

We must show that P(k + 1) is true:

(A1∩A2∩· · ·∩Ak∩Ak+1)∪B = (A1∪B)∩(A2∪B)∩· · ·∩(Ak+1∪B).
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Example 10: Proving the Set Identity

Inductive Step: Proof

Start with the left-hand side of P(k + 1):

(A1 ∩ A2 ∩ · · · ∩ Ak ∩ Ak+1) ∪ B.

By associative and distributive properties of sets:

= [(A1 ∩ A2 ∩ · · · ∩ Ak) ∩ Ak+1] ∪ B.

Apply the distributive law:

= [(A1 ∩ A2 ∩ · · · ∩ Ak) ∪ B] ∩ (Ak+1 ∪ B).

Apply the inductive hypothesis:

= [(A1 ∪ B) ∩ (A2 ∪ B) ∩ · · · ∩ (Ak ∪ B)] ∩ (Ak+1 ∪ B).
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Example 10: Proving the Set Identity

Conclusion

This simplifies to:

= (A1 ∪ B) ∩ (A2 ∪ B) ∩ · · · ∩ (Ak+1 ∪ B).

This shows that P(k + 1) is true when P(k) is true.

The induction step is complete.

By mathematical induction, P(n) is true for all positive
integers n.

Therefore, we have proven the set identity for any number of
sets A1,A2, . . . ,An and set B.
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Mistaken Proof by Mathematical Induction

Problem Statement

Find the error in this “proof” of the clearly false claim: “Every
set of lines in the plane, no two of which are parallel, meet in
a common point.”

Let P(n) be the statement that every set of n lines in the
plane, no two of which are parallel, meet in a common point.
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Mistaken Proof by Mathematical Induction

Basis Step

The statement P(2) is true because any two lines in the plane
that are not parallel meet in a common point (by the
definition of parallel lines).

Therefore, the basis step is correctly completed.
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Mistaken Proof by Mathematical Induction

Inductive Step: Statement

Assume P(k) is true for some positive integer k .

That is, assume every set of k lines in the plane, no two of
which are parallel, meet in a common point.

We must show that P(k + 1) is true:

That is, every set of k + 1 lines in the plane, no two of which
are parallel, meet in a common point.
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Mistaken Proof by Mathematical Induction

Inductive Step: Proof

Consider a set of k + 1 distinct lines in the plane.

By the inductive hypothesis, the first k of these lines meet in
a common point p1.

By the inductive hypothesis, the last k of these lines meet in a
common point p2.

We show that p1 and p2 must be the same point:

If p1 and p2 were different, all lines containing both must be
the same line (since two points determine a line).
This contradicts the assumption that all lines are distinct.
Therefore, p1 = p2.

This supposedly completes the inductive step.
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Mistaken Proof by Mathematical Induction

Identifying the Error

Examining this proof by mathematical induction, it appears
that everything is in order.

However, there is a subtle error:

The inductive step requires k ≥ 3.
When k = 2, the goal is to show that every three distinct lines
meet in a common point.
The first two lines meet in a common point p1, and the last
two meet in a common point p2.
In this case, p1 and p2 do not have to be the same because
only the second line is common to both sets.

This is where the inductive step fails.
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Mistaken Proof by Mathematical Induction

Conclusion

The supposed proof by mathematical induction is incorrect.

The error lies in the inductive step, specifically when trying to
extend the result from k = 2 to k + 1 = 3.

This example highlights the importance of carefully verifying
each step in a proof by mathematical induction.

80 / 82



Guidelines for Proofs by Mathematical Induction

1. Express the statement that is to be proved in the form “for all
n ≥ b, P(n)” for a fixed integer b.

2. Write out the words “Basis Step.” Then show that P(b) is
true, taking care that the correct value of b is used. This
completes the first part of the proof.

3. Write out the words “Inductive Step.”

4. State, and clearly identify, the inductive hypothesis, in the
form “assume that P(k) is true for an arbitrary fixed integer
k ≥ b.”

5. State what needs to be proved under the assumption that the
inductive hypothesis is true. That is, write out what P(k + 1)
says.
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Guidelines for Proofs by Mathematical Induction

6. Prove the statement P(k + 1) making use of the assumption
P(k). Be sure that your proof is valid for all integers k ≥ b,
taking care that the proof works for small values of k ,
including k = b.

7. Clearly identify the conclusion of the inductive step, such as
by saying “this completes the inductive step.”

8. After completing the basis step and the inductive step, state
the conclusion, namely that by mathematical induction, P(n)
is true for all integers n ≥ b.
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