
CS 2500: Algorithms
Lecture 4: Introduction to Recursion

Shubham Chatterjee

Missouri University of Science and Technology, Department of Computer Science

August 29, 2024

1 / 47



Logistics

Weekly assignment 1 released (due Sep 3 at 11.59 PM).

Quick assignment 1 released (due Aug 29 at 11.59 PM)

No quick assignment today!

Come to recitations and office hours to get help on
assignments.

2 / 47



Introduction to Recursion

What is recursion?

Recursion is a technique where a function calls itself to solve a
smaller instance of the same problem.

It’s particularly powerful for problems that can be broken
down into simpler, identical subproblems.

Common examples include factorial computation, Fibonacci
sequence, and algorithms like GCD.

Key Idea: Reduce a problem to one or more smaller instances of
the same problem, and solve it using the same approach.

3 / 47



Real-world Example: RSA Encryption

RSA Encryption and Decryption

RSA is a widely used public-key cryptosystem for secure data
transmission.

Encryption: Given a message M, compute the ciphertext C as:

C = Me mod n

Decryption: To recover M, compute:

M = Cd mod n

Here, e is the public key exponent, and d is the private key
exponent.

Last class: How well can we implement this?

4 / 47



Real-world Example: RSA Key Generation

RSA Key Generation and GCD

In RSA, choosing a public key exponent e requires it to be
coprime with ϕ(n), where

n = p × q
ϕ(n) = (p − 1)× (q − 1).
p and q are large prime numbers.

To ensure e and ϕ(n) are coprime, we need to compute the
greatest common divisor (GCD) of e and ϕ(n):

gcd(e, ϕ(n))

If gcd(e, ϕ(n)) = 1, e is a valid public key exponent.

This process can be implemented efficiently using the
Euclidean algorithm.

Question: How can we compute the GCD using recursion?

5 / 47



Iterative GCD Algorithm

Algorithm IterativeGCD(a, b)

1: while b ̸= 0 do
2: r ← a mod b
3: a← b
4: b ← r
5: end while
6: return a

Example:

Start with a = 252 and b = 105.

Iteration 1: r = 252 mod 105 = 42, update a = 105, b = 42.

Iteration 2: r = 105 mod 42 = 21, update a = 42, b = 21.

Iteration 3: r = 42 mod 21 = 0, update a = 21, b = 0.

Result: GCD is 21.

6 / 47



Identifying Base Case and Recursive Step

Base Case: The loop terminates when b = 0. This becomes
our base case in the recursive version.

Recursive Step: In each iteration, a and b are updated. In
the recursive version, this update becomes the recursive call.

Conversion Strategy: Replace the loop with a recursive
function that reduces the problem size in each call.

7 / 47



Converting Iteration to Recursion

Iterative to Recursive Conversion:

Iterative Loop: Continues until b = 0.

Recursive Call: Each iteration corresponds to a recursive call
where a and b are updated.

Termination: The loop’s termination condition b = 0
becomes the base case for recursion.

8 / 47



Recursive GCD Algorithm

Algorithm RecursiveGCD(a, b)

1: if b = 0 then ▷ Base Case
2: return a
3: else ▷ Recursive Step
4: return RecursiveGCD(b, a mod b)
5: end if

Example:

Start with gcd(252, 105).

Compute 252 mod 105 = 42, so
gcd(252, 105) = gcd(105, 42).

Compute 105 mod 42 = 21, so gcd(105, 42) = gcd(42, 21).

Compute 42 mod 21 = 0, so gcd(42, 21) = 21.

Result: GCD is 21.

9 / 47



Side-by-Side Comparison

Iterative GCD

Algorithm IterativeGCD(a,
b)

1: while b ̸= 0 do
2: r ← a mod b
3: a← b
4: b ← r
5: end while
6: return a

Recursive GCD

Algorithm Recur-
siveGCD(a, b)

1: if b = 0 then ▷ Base
Case

2: return a
3: else ▷ Recursive Step
4: return

RecursiveGCD(b, a
mod b)

5: end if

10 / 47



Real-world Example: RSA Encryption

RSA Encryption and Decryption

RSA is a widely used public-key cryptosystem for secure data
transmission.

Encryption: Given a message M, compute the ciphertext C as:

C = Me mod n

Decryption: To recover M, compute:

M = Cd mod n

Here, e is the public key exponent, and d is the private key
exponent.

Last class: Iterative algorithm for computing xn. Complexity:
Θ(logn)

11 / 47



Recursive Algorithm for bn mod m

The recursive algorithm for computing bn mod m can be
based on the relationship:

bn mod m = (b × (bn−1 mod m)) mod m

Initial condition: b0 mod m = 1.

12 / 47



How the Algorithm Works

Base Case:

The base case occurs when n = 0.

By definition, any number raised to the power of 0 is 1 (i.e.,
b0 = 1).

So, b0 mod m = 1.

This provides a stopping condition for the recursion.

13 / 47



How the Algorithm Works

Recursive Case:

For n > 0, the problem can be reduced by recognizing that bn

can be expressed as b × bn−1.

Instead of computing bn directly, compute bn−1 mod m
recursively.

Then multiply the result by b and take the result modulo m
again:

bn mod m = (b × (bn−1 mod m)) mod m

This breaks down the problem into smaller multiplications,
each time reducing the exponent by 1.

14 / 47



Recursive Algorithm

Algorithm RecursiveModExp(b, n, m)

1: if n = 0 then ▷ Base Case
2: return 1
3: else ▷ Recursive Step
4: y ← RecursiveModExp(b, n − 1,m)
5: return (b × y) mod m
6: end if

15 / 47



Why This Works

Modular Arithmetic Property:

The equation

(x × y) mod m = [(x mod m)× (y mod m)] mod m

ensures that intermediate results remain within manageable
bounds.

This prevents overflow and makes the algorithm efficient even
for large exponents.

16 / 47



Why This Works (continued)

Recursive Decomposition:

By recursively reducing the exponent n by 1 at each step, the
algorithm gradually breaks down the problem into smaller,
easily solvable pieces.

This approach mirrors how mathematical induction works:
solve the problem for a base case, then assume it works for a
smaller problem, and show that it works for the next step.

17 / 47



Efficiency

Although this recursive approach is straightforward, it is not
the most efficient way to compute large powers modulo m.

The time complexity is Θ(n) due to the n recursive calls.

However, it clearly illustrates the concept of breaking down
the problem using recursion.

Question: Can we do better than Θ(n)?

18 / 47



Efficient Recursive Algorithm for bn mod m

We can devise a much more efficient recursive algorithm based on
the observation that:

when n is even:

bn mod m =
(
bn/2 mod m

)2
mod m

when n is odd:

bn mod m =

[(
b⌊n/2⌋ mod m

)2
mod m · b

]
mod m

Constraints:

b, n, and m are integers

m ≥ 2, n ≥ 0, 1 ≤ b < m

19 / 47



Case 1: n is Even

Express n as n = 2k for some integer k .

Then:

bn = b2k =
(
bk

)2

Apply modulo m on both sides:

bn mod m =

((
bk

)2
)

mod m

20 / 47



Case 1: n is Even

Use the property of modular arithmetic:

(x × y) mod m = [(x mod m)× (y mod m)] mod m

Applying it to the equation:

bn mod m =
[(

bk mod m
)
×
(
bk mod m

)]
mod m

Simplifying gives:

bn mod m =
(
bn/2 mod m

)2
mod m

Therefore, the equality holds for even n.

21 / 47



Case 2: n is Odd

1. Express n as n = 2k + 1:

Since n is odd, we can express it as n = 2k + 1, where
k =

⌊
n
2

⌋
.

This gives us:
bn = b2k+1 = b × b2k

22 / 47



Case 2: n is Odd

2. Apply the Property of Exponents:

We know that:

b2k =
(
bk

)2

So, substitute this into the previous expression:

bn = b ×
(
bk

)2

23 / 47



Case 2: n is Odd

3. Apply Modulo m to Both Sides:

Now, take modulo m on both sides:

bn mod m =

[
b ×

(
bk

)2
]

mod m

According to the properties of modular arithmetic, you can
apply the modulo to each term:

bn mod m =

[((
bk

)2
mod m

)
× (b mod m)

]
mod m

24 / 47



Case 2: n is Odd

4. Simplify the Expression:

Recognize that
(
bk

)2
mod m can be expressed as(

bk mod m
)2

mod m.

Also, if b < m, then b mod m = b. Therefore, the expression
simplifies to:

bn mod m =

[(
b⌊

n
2⌋ mod m

)2
mod m × b

]
mod m

25 / 47



Time Complexity Analysis

The recursive algorithm for computing bn mod m works as
follows:

Base Case: If n = 0, return 1.

Recursive Case:
If n is even:

bn mod m =
(
bn/2 mod m

)2

mod m

If n is odd:

bn mod m =

[(
b⌊n/2⌋ mod m

)2

mod m × b

]
mod m

26 / 47



Time Complexity Analysis

The algorithm reduces the exponent n by half at each
recursive step.

The depth of the recursion tree is approximately log2(n).

Key operations at each step:

Squaring the result of a recursive call.
Multiplication and modulo operation.

27 / 47



Time Complexity Analysis

Number of Recursive Calls:
The problem size reduces from n to n/2 at each step.
Recursion depth is log2(n). [Homework: Why?]

Work Done at Each Step:
Constant amount of work (O(1)) involving multiplication and
modulo operation.

28 / 47



Time Complexity Analysis

Total Work:
Recursion depth: log2(n).
Work at each level: O(1).

Overall Time Complexity:

f (n) = Θ(log n)

The algorithm is efficient with logarithmic time complexity,
ideal for cryptographic applications.

29 / 47



Efficient Recursive Algorithm for bn mod m

Algorithm mpower(b, n, m)

1: if n = 0 then
2: return 1
3: else if n is even then
4: return mpower(b, n/2,m)2 mod m
5: else
6: return

(
mpower(b, ⌊n/2⌋ ,m)2 mod m × b

)
mod m

7: end if

30 / 47



Recursive Linear Search

The goal is to search for the first occurrence of x in the sequence
a1, a2, . . . , an using a recursive approach.

At the ith step, compare x with ai .

If x = ai , return the index i .

Otherwise, reduce the search to the sequence ai+1, . . . , aj .

The algorithm returns 0 if x is not found after all elements are
examined.

31 / 47



Recursive Linear Search

Algorithm search(a,i,j,x)

1: if a[i ] = x then
2: return i
3: else if i = j then
4: return 0
5: else
6: return search(i + 1, j , x)
7: end if

32 / 47



Recursive Binary Search

The goal is to locate x in the sequence a1, a2, . . . , an of integers in
increasing order using a recursive binary search approach.

Compare x with the middle term a⌊(i+j)/2⌋.

If x = am, return the location m.

If x < am, search the first half of the sequence.

If x > am, search the second half of the sequence.

Return 0 if x is not found in the sequence.

33 / 47



Recursive Binary Search

Algorithm RecBinSearch(a,i,j,x)

1: m←
⌊
i+j
2

⌋
2: if x = a[m] then
3: return m
4: else if x < a[m] and i < m then
5: return RecBinSearch(a, i ,m − 1, x)
6: else if x > a[m] and j > m then
7: return RecBinSearch(a,m + 1, j , x)
8: else
9: return 0

10: end if

34 / 47



Iterative Factorial

Algorithm IterativeFactorial(n)

1: result ← 1
2: for i ← 2 to n do
3: result ← result × i
4: end for
5: return result

35 / 47



Recursive Factorial

The factorial of a non-negative integer n is defined recursively as:

Base Case: 0! = 1

Recursive Case: n! = n × (n − 1)! for n > 0

factorial(n) =

{
1 if n = 0

n × factorial(n − 1) if n > 0

36 / 47



Recursive Factorial

Algorithm RecursiveFactorial(n)

1: if n = 0 or n = 1 then ▷ Base Case
2: return 1
3: else ▷ Recursive Step
4: return n × RecursiveFactorial(n − 1)
5: end if

37 / 47



Tracing Recursive Calls: Factorial Example

Recursion involves a function calling itself to solve smaller
subproblems.

Tracing recursive calls helps us understand the flow of
execution in a recursive algorithm.

We’ll walk through the recursive calls for the factorial function
as an example.

38 / 47



Tracing the Recursive Calls for n = 3

Let’s trace the recursive calls when calculating factorial(3):

Call: factorial(3)

Call: factorial(2)

Call: factorial(1)

Call: factorial(0)

Return: 1 (from factorial(0))

Return: 1× 1 = 1 (from factorial(1))

Return: 2× 1 = 2 (from factorial(2))

Return: 3× 2 = 6 (from factorial(3))

39 / 47



Visualizing the Call Stack for factorial(3)

The recursive calls build up the call stack as follows:
1 factorial(3)
2 factorial(2)
3 factorial(1)
4 factorial(0)

As the base case is reached, the stack unwinds, returning
values:

1 factorial(0) = 1
2 factorial(1) = 1× 1 = 1
3 factorial(2) = 2× 1 = 2
4 factorial(3) = 3× 2 = 6

40 / 47



Common Pitfalls

Writing recursive functions can be challenging due to the need
for careful structuring.

Common mistakes can lead to issues such as infinite recursion,
incorrect results, or stack overflow.

Understanding these pitfalls helps in writing correct and
efficient recursive functions.

41 / 47



Pitfall 1: Missing or Incorrect Base Case

Base Case: The base case is the condition under which the
recursion stops.

Common Mistake: Forgetting to include a base case or
having an incorrect base case.

Consequence: Leads to infinite recursion, as the function
keeps calling itself indefinitely.

Example:
Incorrect:

factorial(n) = n × factorial(n − 1) (No base case)

Correct:

factorial(n) =

{
1 if n = 0

n × factorial(n − 1) if n > 0

42 / 47



Pitfall 2: Incorrect Recursive Case

Recursive Case: The recursive case defines how the problem
is broken down into smaller subproblems.
Common Mistake: Incorrectly structuring the recursive case
or using the wrong recursive logic.
Consequence: Leads to incorrect results, even if the base
case is correct.
Example:

Task: Find the maximum element in a list.
Incorrect Recursive Case:

max(L) = max(max(L[1 :]), L[0])

Issue: The comparison should be between the first element
and the maximum of the rest, but the logic incorrectly assumes
it is between the maximum of all elements and the first
element, leading to incorrect results.
Correct Recursive Case:

max(L) =

{
L[0] if len(L) = 1

max(L[0],max(L[1 :])) if len(L) > 1
43 / 47



Pitfall 3: Infinite Recursion Due to Improper
Decrement/Increment

Improper Decrement/Increment: Incorrectly modifying the
argument in the recursive call, leading to no progress towards
the base case.

Common Mistake: Failing to properly decrement or
increment, causing the function to never reach the base case.

Consequence: Infinite recursion and potential stack overflow.

Example:
Incorrect:

countdown(n) = countdown(n) (No decrement)

Correct:

countdown(n) =

{
Done if n = 0

countdown(n − 1) if n > 0

44 / 47



Pitfall 4: Overlapping Subproblems Leading to Inefficiency

Overlapping Subproblems: Solving the same subproblem
multiple times in the recursive calls.

Common Mistake: Not storing the results of subproblems
(e.g., using memoization).

Consequence: Leads to exponential time complexity and
poor performance.

Example:
Fibonacci: Without memoization, the Fibonacci sequence
recalculates the same values repeatedly.
Improvement: Use a dictionary to store results and avoid
redundant calculations.

45 / 47



Pitfall 5: Lack of Understanding of Recursion Depth

Recursion Depth: Understanding the limitations of recursion
depth in a given environment.

Common Mistake: Writing deep recursive functions without
considering the maximum recursion depth.

Consequence: Stack overflow or maximum recursion depth
exceeded errors.

Solution:
Optimize with iterative solutions where possible.
Increase recursion depth limit in environments where necessary.

46 / 47



Common Pitfalls

Conclusion:

Avoiding these common pitfalls requires careful planning and
a solid understanding of recursion.

Always ensure base cases are correctly defined and reachable.

Be mindful of the efficiency and limitations of recursive
solutions.

47 / 47


