
CS 2500: Algorithms
Lecture 3: Asymptotic Notation (Big-Theta) and Analysis of

Non-Recursive Algorithmms

Shubham Chatterjee

Missouri University of Science and Technology, Department of Computer Science

August 27, 2024

1 / 43



Asymptotic Notation: Big-Theta(Θ)

Big-Theta: Let f and g be functions from the integers or the real
numbers to the real numbers. The function f (n) is Θ(g(n)) if
there exist positive constants C1, C2, and k such that:

C1 · g(n) ≤ f (n) ≤ C2 · g(n) for all n > k

Gives average-case time complexity of an algorithm.

More precise than Big-O and Big-Omega: f (n) = Θ(g(n)) if
and only if (iff) g(n) is both an upper and lower bound on
f (n). (Homework: Why?)

2 / 43



Example 1: Sum of n numbers

Algorithm Sum(a, n)

1: s ← 0
2: for i ← 1 to n do
3: s ← s + a[i ]
4: end for
5: return s

3 / 43



Example 1: Sum of n numbers

Algorithm Sum(a, n)

1: s ← 0
2: for i ← 1 to n do
3: s ← s + a[i ]
4: end for
5: return s

Time Complexity Analysis:

Line 1: Initialization s := 0.0; takes constant time, Θ(1).

Line 2: The for loop runs n times, so it contributes Θ(n).

Line 3: Inside the loop, s := s + a[i]; is executed n
times, contributing Θ(n).

Line 4: The return statement is a constant time operation,
Θ(1).

4 / 43



Example 1: Sum of n numbers

Algorithm Sum(a, n)

1: s ← 0
2: for i ← 1 to n do
3: s ← s + a[i ]
4: end for
5: return s

Total Time Complexity:

Adding up the contributions:
Θ(1) + Θ(n) + Θ(n) + Θ(1) = Θ(n).

Therefore, the overall time complexity is Θ(n), meaning the
algorithm’s runtime grows linearly with the input size n.

Space Complexity: Θ(1)

5 / 43



Example 2: Matrix addition

Algorithm Add(a, b, c, m, n)

1: for i ← 1 to m do
2: for j ← 1 to n do
3: c[i , j ]← a[i , j ] + b[i , j ]
4: end for
5: end for

6 / 43



Example 2: Matrix addition

Algorithm Add(a, b, c, m, n)

1: for i ← 1 to m do
2: for j ← 1 to n do
3: c[i , j ]← a[i , j ] + b[i , j ]
4: end for
5: end for

Time Complexity Analysis:

Line 1: The outer for loop runs m times, contributing Θ(m).

Line 2: The inner for loop runs n times for each iteration of
the outer loop, contributing Θ(mn).

Line 3: Inside the inner loop, the addition operation
c[i , j ]← a[i , j ] + b[i , j ] is executed mn times, contributing
Θ(mn).

7 / 43



Example 2: Matrix addition

Algorithm Add(a, b, c, m, n)

1: for i ← 1 to m do
2: for j ← 1 to n do
3: c[i , j ]← a[i , j ] + b[i , j ]
4: end for
5: end for

Total Time Complexity:

Adding up the contributions:
Θ(m) + Θ(mn) + Θ(mn) = Θ(mn).

Overall: Θ(mn). The algorithm’s runtime grows with the
product of the input dimensions m and n.

Space Complexity: Θ(m × n) for matrix c.

8 / 43



Example 3: Fibonacci Series

Algorithm Fibonacci(n)

1: if n ≤ 1 then
2: write(n);
3: else
4: fnm2← 0; fnm1← 1;
5: for i ← 2 to n do
6: fn← fnm1 + fnm2;
7: fnm2← fnm1; fnm1← fn;
8: end for
9: write(fn);

10: end if

9 / 43



Example 3: Fibonacci Series

Time Complexity Analysis:

Lines 1-2: The check if (n ≤ 1) and write(n) are
constant time operations, Θ(1).

Line 4: Initialization of fnm2 and fnm1 takes constant time,
Θ(1).

Line 5: The for loop runs from 2 to n, so it executes (n− 1)
times, contributing Θ(n).

Lines 6-7: Each iteration of the loop involves constant time
operations, hence the total contribution of these lines is Θ(n).

Line 9: write(fn) operation takes constant time, Θ(1).

Total Time Complexity:

Adding up the contributions:
Θ(1) + Θ(1) + Θ(n) + Θ(n) + Θ(1) = Θ(n).

Overall: Θ(n).

Space Complexity: Θ(1)
10 / 43



Example 4: Magic Square

Magic Square. Problem from recreational mathematics.

A square array of numbers, usually positive integers, is called
a magic square if the sums of the numbers in each row, each
column, and both main diagonals are the same.

We will look at an algorithm for creating an n × n magic
square.

11 / 43



Example 4: Magic Square

12 / 43



Example 4: Magic Square

Time Complexity Analysis:

Line 4-7: If n is even, the algorithm terminates early,
resulting in Θ(1) time.

Line 10-13: Initializing the square matrix of size n × n takes
Θ(n2) time.

Line 14: Initializing the middle element of the first row takes
constant time, Θ(1).

Line 15-28: The loop runs n2 − 1 times, and each iteration
involves constant time operations, contributing Θ(n2).

Line 30-32: Outputting the magic square requires iterating
over the n × n matrix, which takes Θ(n2) time.

Total Time Complexity:

Adding up the contributions:
Θ(n2) + Θ(1) + Θ(n2) + Θ(n2) = Θ(n2).

Overall: Θ(n2).

Space Complexity: Θ(n2)
13 / 43



Example 5: Maximum Element in a List

Problem: Find the value of the largest element in a list of n
numbers.

Algorithm MaxElement(a)

1: maxval ← a[0]
2: for i ← 1 to n − 1 do
3: if a[i ] > maxval then
4: maxval ← a[i ]
5: end if
6: end for
7: return maxval

14 / 43



Example 5: Maximum Element in a List

Time Complexity Analysis:

Line 1: Initializing maxval with the first element takes
constant time, Θ(1).

Line 2: The for loop runs n − 1 times, so its contribution is
Θ(n).

Line 3-6: Each iteration checks if the current element is
greater than maxval and updates maxval if necessary. This
comparison and possible assignment are constant time
operations, Θ(1), but since they run inside the loop, their
total contribution is Θ(n).

Line 7: The return statement is a constant time operation,
Θ(1).

15 / 43



Example 5: Maximum Element in a List

Total Time Complexity

Adding up the contributions from all lines:

Θ(1) + Θ(n) + Θ(n) + Θ(1) = Θ(n)

Therefore, the overall time complexity is Θ(n).

This means the algorithm’s runtime grows linearly with the
size of the input array n.

Space Complexity: Θ(1)

16 / 43



Example 6: Check Unique Element in a List

Problem: Check whether all the elements in a given array of n
elements are distinct.

Algorithm UniqueElements(a)

1: for i ← 0 to n − 2 do
2: for j ← i + 1 to n − 1 do
3: if a[i ] = a[j ] then
4: return false

5: end if
6: end for
7: end for
8: return true

17 / 43



Example 6: Check Unique Element in a List

Worst-Case Input:

The worst-case occurs when the algorithm does not exit the
loop prematurely.

Two kinds of worst-case inputs:
1 Arrays with no equal elements.
2 Arrays in which the last two elements are the only pair of equal

elements.

In these cases, one comparison is made for each repetition of
the innermost loop.

Question: What is the number of comparisons for a fixed i?

18 / 43



Example 6: Check Unique Element in a List

What is the number of comparisons for a fixed i?
Answer: n − i − 1

The UniqueElements algorithm compares each element a[i ]
with every subsequent element in the array.

For a fixed i , the algorithm compares a[i ] with elements
a[i + 1], a[i + 2], . . . , a[n − 1].

The elements that come after a[i ] start at index i + 1 and end
at index n − 1.

The total number of elements after A[i ] is:
(n − 1)− (i + 1) + 1 = n − i − 1

Therefore, the number of comparisons for a fixed i is n− i − 1.

19 / 43



Example 6: Check Unique Element in a List

Total Number of Comparisons in the Worst Case:

fworst(n) =
n−2∑
i=0

(n − 1− i)

=
n−2∑
i=0

(n − 1)−
n−2∑
i=0

i

= (n − 1)× (n − 1)− (n − 2)(n − 1)

2

=
2(n − 1)2 − (n − 2)(n − 1)

2

=
n2 − n

2

=
n(n − 1)

2
≈ 1

2
n2 ∈ Θ(n2)

20 / 43



Example 6: Check Unique Element in a List

Summary:

The UniqueElements algorithm checks whether all elements
in an array are distinct by comparing every pair of elements.

The worst-case time complexity is Θ(n2), which occurs when
the algorithm must compare all possible pairs of elements.

This quadratic time complexity arises because the algorithm
examines every pair of elements in the worst case.

Space Complexity: Θ(1)
Can we improve the time complexity any further? How?

21 / 43



Example 6: Check Unique Element in a List

Improved Algorithm: Using a Hash Set
Use a hash set to track the elements we’ve seen as we iterate
through the array.
For each element, check if it already exists in the hash set.
If it does, the array has duplicates; otherwise, continue.

Algorithm UniqueElements2(a)

1: Initialize an empty hash set seen
2: for i ← 0 to n − 1 do
3: if a[i ] is in seen then
4: return false

5: else
6: Insert a[i ] into seen

7: end if
8: end for
9: return true

22 / 43



Example 6: Check Unique Element in a List

Time Complexity:

Hash set operations (insertion and lookup) take Θ(1) time on
average.

Iterating through the array takes Θ(n) time.

Total Time Complexity: Θ(n)
Space Complexity: Θ(n) for the hash set.

23 / 43



Example 7: Matrix Multiplication

Problem:

Given two n × n matrices a and b, compute their product
c = ab.

The product matrix c is also an n × n matrix, where each
element c[i , j ] is the dot product of the i-th row of a and the
j-th column of b.

24 / 43



Example 7: Matrix Multiplication

Algorithm MatrixMultiplication(a,b)

1: for i ← 0 to n − 1 do
2: for j ← 0 to n − 1 do
3: c[i , j ]← 0.0
4: for k ← 0 to n − 1 do
5: c[i , j ]← c[i , j ] + a[i , k]× b[k , j ]
6: end for
7: end for
8: end for
9: return c

25 / 43



Example 7: Matrix Multiplication

Time Complexity:

The algorithm consists of three nested loops:

Outer loop over i runs n times.
Middle loop over j runs n times for each i .
Inner loop over k runs n times for each pair (i , j).

Each iteration of the innermost loop involves a constant-time
operation (multiplication and addition).

Total number of operations: n × n × n = n3.

Total Time Complexity: Θ(n3)
Space Complexity: Θ(n2) for matrix ‘c‘

26 / 43



Example 8: Counting Binary Digits

Problem:

Given a positive decimal integer n, determine the number of
binary digits (bits) in its binary representation.

Example:

The binary representation of 13 is 1101, which has 4 digits.
The binary representation of 8 is 1000, which has 4 digits.
The binary representation of 1 is 1, which has 1 digit.

Algorithm Binary(n)

1: count ← 1
2: while n > 1 do
3: count ← count + 1
4: n← ⌊n/2⌋
5: end while
6: return count

27 / 43



Example 8: Counting Binary Digits

Key Insight: Why the Algorithm Works
Binary Representation and Powers of 2:

Binary is a base-2 system: each digit represents a power of 2.

Example: 11012 = 1× 23 + 1× 22 + 0× 21 + 1× 20 = 13.

The number of binary digits is the number of powers of 2
needed to represent n.

Dividing by 2:

Each division by 2 shifts the binary digits to the right,
reducing the number of digits by 1.

The algorithm counts how many times n can be divided by 2
until it becomes 1.

28 / 43



Example 8: Counting Binary Digits

Time Complexity Analysis
Loop Analysis:

The loop continues until n is no longer greater than 1.

Each iteration of the loop divides n by 2.

The number of iterations equals the number of times n can be
halved before it becomes 1.

Number of Divisions:

The number of divisions is equal to the number of binary
digits in n.

This is ⌊log2 n⌋+ 1, where log2 n is the number of times 2 can
be multiplied to reach n.

29 / 43



Example 8: Counting Binary Digits

Time Complexity:

Each iteration involves constant-time operations:
incrementing count and dividing n by 2.

Since the loop runs approximately log2 n times, the overall
time complexity is Θ(log n).

Summary:

The Binary algorithm efficiently counts the number of binary
digits in n with a time complexity of Θ(log n).

This logarithmic growth makes the algorithm highly efficient,
even for large values of n.

Space Complexity: Θ(1)

30 / 43



Example 9: Mystery

Algorithm Mystery(n)

1: S ← 0
2: for i ← 1 to n do
3: S ← S + i × i
4: end for
5: return S

1 What does this algorithm compute?

2 What is its basic operation?

3 How many times is the basic operation executed?

4 What is the efficiency class of this algorithm?

5 Suggest an improvement, or a better algorithm altogether,
and indicate its efficiency class. If you cannot do it, try to
prove that, in fact, it cannot be done.

31 / 43



Example 9: Mystery

1. What does this algorithm compute?

The algorithm computes the sum of the squares of the first n
natural numbers.

Specifically, it calculates:

S = 12 + 22 + 32 + · · ·+ n2

This can be written as:

S =
n∑

i=1

i2

32 / 43



Example 9: Mystery

2. What is its basic operation?

The basic operation of the algorithm is the multiplication
i × i , which computes the square of the integer i .

33 / 43



Example 9: Mystery

3. How many times is the basic operation executed?

The basic operation (squaring of i) is executed once for each
iteration of the ‘for‘ loop.

The loop runs from i = 1 to i = n, so the basic operation is
executed n times.

34 / 43



Example 9: Mystery

4. What is the efficiency class of this algorithm?

The algorithm has a time complexity of Θ(n).

The loop runs n times, and each iteration involves a constant
amount of work (multiplication and addition).

35 / 43



Example 9: Mystery

5. Can we improve the algorithm?

The sum of the squares of the first n natural numbers has a
known closed-form formula:

S =
n∑

i=1

i2 =
n(n + 1)(2n + 1)

6

This formula allows us to compute the sum in constant time,
Θ(1), rather than iteratively summing the squares.

Improved Algorithm: ImprovedMystery(n)

1: S ← n × (n + 1)× (2n + 1)/6
2: return S

Efficiency Class: Θ(1)

36 / 43



Real-world Example: RSA Encryption

RSA Encryption and Decryption

RSA is a widely used public-key cryptosystem for secure data
transmission.

Encryption: Given a message M, compute the ciphertext C as:

C = Me mod n

Decryption: To recover M, compute:

M = Cd mod n

Here, e is the public key exponent, and d is the private key
exponent.

Question: How well can we implement this?

37 / 43



Example 10: Computing xn

Task. The problem is to compute xn for any real number x and
integer n ≥ 0.
Naive Algorithm:

Algorithm NaiveExponentiate(x , n)

1: power ← x
2: for i ← 1 to n − 1 do
3: power ← power × x
4: end for
5: return power

Time Complexity: Θ(n)

38 / 43



Example 10: Computing xn

Improved Approach: Repeated Squaring. A better approach is
to employ the “repeated squaring” trick.
Case 1: When n is a power of 2:

If n = 2k for some integer k , compute xn using the following
algorithm:

Algorithm PowerOf2Exponentiate(x , k)

1: power ← x
2: for i ← 1 to k do
3: power ← power2

4: end for
5: return power

Time Complexity: Θ(log n)

39 / 43



Example 10: Computing xn

Case 2: General case: When n is not a power of 2:

Key Idea: Represent n in binary form.

Let bkbk−1 . . . b1b0 be the binary representation of n. This
means:

n =
k∑

q=0

bq2
q

Therefore,

xn = x
∑k

q=0 bq2
q

= (x2
0
)b0 × (x2

1
)b1 × · · · × (x2

k
)bk

40 / 43



Example 10: Computing xn

Exponentiate Algorithm. The general case is handled by the
following algorithm:

Algorithm Exponentiate(x , n)

1: m← n; power ← 1; z ← x
2: while m > 0 do
3: while (m mod 2) = 0 do
4: m← m/2; z ← z2

5: end while
6: m← m − 1; power ← power × z
7: end while
8: return power

41 / 43



Example 10: Computing xn

Time Complexity Analysis
Outer While Loop:

The loop runs as long as m > 0. Each iteration either halves
m or decreases it by 1.

Since m decreases by at least a factor of 2 in each iteration,
the number of iterations is at most Θ(log n).

Inner While Loop:

The inner loop also runs Θ(log n) times, squaring z at each
step.

Final Time Complexity: Θ(log n)

42 / 43



Example 10: Computing xn

Summary:

The repeated squaring method significantly reduces the
number of multiplications needed to compute xn.

The naive method takes Θ(n) time, whereas the improved
method takes Θ(log n) time.

The algorithm leverages binary representation to break down
the problem into smaller steps, making it efficient for large n.

Applications: This method is widely used in cryptography and
other fields requiring fast exponentiation.

43 / 43


