CS 2500: Algorithms

Lecture 3: Asymptotic Notation (Big-Theta) and Analysis of
Non-Recursive Algorithmms

Shubham Chatterjee
Missouri University of Science and Technology, Department of Computer Science

August 27, 2024

1/43

Asymptotic Notation: Big-Theta(©)

Big-Theta: Let f and g be functions from the integers or the real
numbers to the real numbers. The function f(n) is ©(g(n)) if
there exist positive constants C;, (, and k such that:

G -g(n) < f(n) < G -g(n)forall n>k

@ Gives average-case time complexity of an algorithm.

@ More precise than Big-O and Big-Omega: f(n) = ©(g(n)) if
and only if (iff) g(n) is both an upper and lower bound on
f(n). (Homework: Why?)

2/43

Example 1: Sum of n numbers

Algorithm Sum(a, n)

s+ 0

for i <+ 1 to ndo
s < s+ a[i]

end for

return s

I O

3/43

Example 1: Sum of n numbers

Algorithm Sum(a, n)

1: s+ 0

2: for i <+ 1 to ndo
3: s < s+ ali]

4: end for

5: return s

Time Complexity Analysis:
e Line 1: Initialization s := 0.0; takes constant time, ©(1).
@ Line 2: The for loop runs n times, so it contributes ©(n).
@ Line 3: Inside the loop, s := s + a[i]; is executed n
times, contributing ©(n).
@ Line 4: The return statement is a constant time operation,

o(1).

4/43

Example 1: Sum of n numbers

Algorithm Sum(a, n)

s+ 0

for i < 1 to ndo
s < s+ a[i]

end for

return s

\. J

@D PRE

Total Time Complexity:
@ Adding up the contributions:
©(1) + ©(n) + ©(n) + ©(1) = O(n).
@ Therefore, the overall time complexity is ©(n), meaning the
algorithm's runtime grows linearly with the input size n.

Space Complexity: ©(1)

5/43

Example 2: Matrix addition

Algorithm Add(a, b, ¢, m, n)

1: for i < 1 to m do

2: for j < 1 to ndo

3 cli,j] < ali,j] + bli,J]
4: end for

5. end for

6/43

Example 2: Matrix addition

Algorithm Add(a, b, ¢, m, n)

1: for i < 1 to m do

2: for j < 1 to ndo

3 cli,j] « ali,j] + bli,]
4: end for

5. end for

Time Complexity Analysis:
@ Line 1: The outer for loop runs m times, contributing ©(m).

@ Line 2: The inner for loop runs n times for each iteration of
the outer loop, contributing ©(mn).

@ Line 3: Inside the inner loop, the addition operation
cli,j] < a[i,j] + b[i,J] is executed mn times, contributing
©(mn).

7/43

Example 2: Matrix addition

Algorithm Add(a, b, ¢, m, n)

1: for i < 1 to m do

2: for j < 1 to ndo

3: cli,jl < ali,j] + bli,J]
4: end for

5. end for

\. J

Total Time Complexity:
@ Adding up the contributions:
©(m) + ©(mn) + ©(mn) = ©(mn).
@ Overall: ©(mn). The algorithm's runtime grows with the
product of the input dimensions m and n.

Space Complexity: ©(m x n) for matrix c.

8/43

Example 3: Fibonacci Series

Algorithm Fibonacci(n)

1: if n <1 then

2 write(n);

3: else

4 fnm2 < 0; fnml < 1;

5: for i < 2 to ndo

6 fn < fnml + fnm2;

7 fnm2 < fnml; fnml < fn;
8 end for

9: write(fn);

10: end if

9/43

Example 3: Fibonacci Series

Time Complexity Analysis:

@ Lines 1-2: The check if (n <1) and write(n) are
constant time operations, ©(1).

@ Line 4: Initialization of fnm2 and fnml takes constant time,
O(1).

@ Line 5: The for loop runs from 2 to n, so it executes (n — 1)
times, contributing ©(n).

@ Lines 6-7: Each iteration of the loop involves constant time
operations, hence the total contribution of these lines is ©(n).

@ Line 9: write(fn) operation takes constant time, ©(1).
Total Time Complexity:
@ Adding up the contributions:
O(1) + ©(1) + ©(n) + ©(n) + ©(1) = O(n).
e Overall: ©(n).
Space Complexity: ©(1)

10/43

Example 4. Magic Square

@ Magic Square. Problem from recreational mathematics.

@ A square array of numbers, usually positive integers, is called
a magic square if the sums of the numbers in each row, each
column, and both main diagonals are the same.

@ We will look at an algorithm for creating an n x n magic
square.

11/43

Example 4. Magic Square

1 Algorithm Magic(n)

2 /[Create a magic square of size n, n being odd.

3

4 i{f ((n mod 2) = 0) then

5

6 write ("n is even"); return;

7

8 else

9 {

10 for i :=0ton—1do // Initialize square to zero,
11 for j:=0ton—1do square[i,j]:=0;

12 square(0, (n —1)/2] :=1; // Middle of first row
13 // (4,4) is the current position.

14 'R (n —1)/2;

15 for key:=2 to n? do

16 { .

17 // Move up and left. The next two if statements
18 // may be replaced by the mod operator if
19 // —1 mod n has the value n — 1.

20 if (¢ > 1) then k —1ljelse k:=n—1;
21 if(j=1)thenl:=j—lielse l:=n—1;

22 if (square[k.l] > 1) then i:= (i + 1) mod n;
23 else // square[k,l] is empty.

24

25 ii=k; 7=

26

27 squareli, j] := keys

28 }

29 // Output the magic square.

30 for i:=0ton—1do

31 for j :=0to n — 1 do write (squareli, j]);
32

33 }

12/43

Example 4. Magic Square

Time Complexity Analysis:
@ Line 4-7: If n is even, the algorithm terminates early,
resulting in ©(1) time.
@ Line 10-13: Initializing the square matrix of size n x n takes
O(n?) time.
@ Line 14: Initializing the middle element of the first row takes
constant time, ©(1).
o Line 15-28: The loop runs n?> — 1 times, and each iteration
involves constant time operations, contributing ©(n?).
o Line 30-32: Outputting the magic square requires iterating
over the n x n matrix, which takes ©(n?) time.
Total Time Complexity:
@ Adding up the contributions:
O(n?) + ©(1) + ©(n?) + ©(n?) = ©(n?).
e Overall: ©(n?).
Space Complexity: ©(n?)

13/43

Example 5: Maximum Element in a List

Problem: Find the value of the largest element in a list of n
numbers.

Algorithm MaxElement(a)

1: maxval < a[0]

2. fori< 1lton—1do

3 if a[i] > maxval then
4: maxval < ali]

5 end if

6: end for

7: return maxval

14/43

Example 5: Maximum Element in a List

Time Complexity Analysis:

o Line 1: Initializing maxval with the first element takes
constant time, ©(1).

@ Line 2: The for loop runs n — 1 times, so its contribution is
O(n).

@ Line 3-6: Each iteration checks if the current element is
greater than maxval and updates maxval if necessary. This
comparison and possible assignment are constant time
operations, ©(1), but since they run inside the loop, their
total contribution is ©(n).

@ Line 7: The return statement is a constant time operation,

o(1).

15/43

Example 5: Maximum Element in a List

Total Time Complexity

@ Adding up the contributions from all lines:
O(1) + ©(n) +©(n) + ©(1) = ©(n)

@ Therefore, the overall time complexity is ©(n).

@ This means the algorithm's runtime grows linearly with the
size of the input array n.

Space Complexity: ©(1)

16/43

Example 6: Check Unique Element in a List

Problem: Check whether all the elements in a given array of n
elements are distinct.

Algorithm UniqueElements(a)

1: for i< 0ton—2do

2 for j< i+1ton—1do
3 if a[i] = a[j] then

4: return false

5 end if

6 end for

8: return true

17/43

Example 6: Check Unique Element in a List

Worst-Case Input:
@ The worst-case occurs when the algorithm does not exit the
loop prematurely.
@ Two kinds of worst-case inputs:

@ Arrays with no equal elements.
@ Arrays in which the last two elements are the only pair of equal
elements.

@ In these cases, one comparison is made for each repetition of
the innermost loop.

Question: What is the number of comparisons for a fixed i?

18/43

Example 6: Check Unique Element in a List

What is the number of comparisons for a fixed i?
Answer: n—i—1

The UniqueElements algorithm compares each element a[i]
with every subsequent element in the array.

For a fixed i, the algorithm compares a[i] with elements

ali +1),a[i+2],...,a[n—1].

The elements that come after a[i] start at index i + 1 and end
at index n — 1.

The total number of elements after A[i] is:
(n=1)—(i+1)+1=n—-i—-1
Therefore, the number of comparisons for a fixed i is n—i —1.

19/43

Example 6: Check Unique Element in a List

Total Number of Comparisons in the Worst Case:

=]
N

fworst(n) = (n -1- I)

3
N ©

n—2
=> (n=1)=> i
i=0

=

o

:(n_l)x(n_l)_w

2
_2(n— 12— (n—2)(n—1)
2

_n?—n
2
= n(n=1) 1n2 € 0(n?)

~

2 2

20/43

Example 6: Check Unique Element in a List

Summary:

@ The UniqueElements algorithm checks whether all elements
in an array are distinct by comparing every pair of elements.

@ The worst-case time complexity is ©(n?), which occurs when
the algorithm must compare all possible pairs of elements.

@ This quadratic time complexity arises because the algorithm
examines every pair of elements in the worst case.

Space Complexity: O(1)
Can we improve the time complexity any further? How?

21/43

Example 6: Check Unique Element in a List

Improved Algorithm: Using a Hash Set
@ Use a hash set to track the elements we've seen as we iterate

t

@ For each element, check if it already exists in the hash set.
e If it does, the array has duplicates; otherwise, continue.

Algorithm UniqueElements2(a)

1
2
3
4
5:
6
7
8
9

hrough the array.

. Initialize an empty hash set seen

: for i<~ 0ton—1do

if a[i] is in seen then
return false

else
Insert a[i] into seen

end if

: end for

. return true

22/43

Example 6: Check Unique Element in a List

Time Complexity:
@ Hash set operations (insertion and lookup) take ©(1) time on
average.
o lterating through the array takes ©(n) time.

Total Time Complexity: ©(n)
Space Complexity: ©(n) for the hash set.

23/43

Example 7: Matrix Multiplication

Problem:
@ Given two n X n matrices a and b, compute their product
c = ab.
@ The product matrix c is also an n x n matrix, where each
element c[i,] is the dot product of the i-th row of a and the
Jj-th column of b.

24/43

Example 7: Matrix Multiplication

Algorithm MatrixMultiplication(a,b)

1: fori< 0ton—1do

2 for j«< 0ton—1do

3 cli,j] + 0.0

4 for k< 0ton—1do
5 cli,j] < cli,j] + ali, k] x b[k,j]
6 end for

7 end for

8: end for

9: return ¢

25/43

Example 7: Matrix Multiplication

Time Complexity:
@ The algorithm consists of three nested loops:
e Outer loop over i runs n times.
e Middle loop over j runs n times for each /.
o Inner loop over k runs n times for each pair (i,).
@ Each iteration of the innermost loop involves a constant-time

operation (multiplication and addition).

e Total number of operations: n x n x n = n3.

Total Time Complexity: O(n%)
Space Complexity: ©(n?) for matrix ‘c’

26 /43

Example 8: Counting Binary Digits

Problem:

@ Given a positive decimal integer n, determine the number of

binary digits (bits) in its binary representation.
e Example:

Algorithm Binary(n)

. count <1
- while n > 1 do

1
2
3
4:
5
6

e The binary representation of 13 is 1101, which has 4 digits.
e The binary representation of 8 is 1000, which has 4 digits.
e The binary representation of 1 is 1, which has 1 digit.

count < count + 1
n< |n/2]

. end while
. return count

27 /43

Example 8: Counting Binary Digits

Key Insight: Why the Algorithm Works

Binary Representation and Powers of 2:
@ Binary is a base-2 system: each digit represents a power of 2.
o Example: 1101, =1 x 23 +1x224+0x 21 +1 x 20 =13.

@ The number of binary digits is the number of powers of 2
needed to represent n.

Dividing by 2:
@ Each division by 2 shifts the binary digits to the right,
reducing the number of digits by 1.

@ The algorithm counts how many times n can be divided by 2
until it becomes 1.

28/43

Example 8: Counting Binary Digits

Time Complexity Analysis
Loop Analysis:

@ The loop continues until n is no longer greater than 1.
o Each iteration of the loop divides n by 2.

@ The number of iterations equals the number of times n can be
halved before it becomes 1.

Number of Divisions:
@ The number of divisions is equal to the number of binary
digits in n.
@ This is [logy n| + 1, where log, n is the number of times 2 can
be multiplied to reach n.

29/43

Example 8: Counting Binary Digits

Time Complexity:
@ Each iteration involves constant-time operations:
incrementing count and dividing n by 2.
@ Since the loop runs approximately log, n times, the overall
time complexity is ©(log n).
Summary:
@ The Binary algorithm efficiently counts the number of binary
digits in n with a time complexity of ©(log n).
@ This logarithmic growth makes the algorithm highly efficient,
even for large values of n.

Space Complexity: O(1)

30/43

Example 9: Mystery

Algorithm Mystery(n)

5«0

for i < 1 to ndo
S« S+ixi

end for

return S

@ e YR

© What does this algorithm compute?

@ What is its basic operation?

© How many times is the basic operation executed?
@ What is the efficiency class of this algorithm?

© Suggest an improvement, or a better algorithm altogether,
and indicate its efficiency class. If you cannot do it, try to
prove that, in fact, it cannot be done.

31/43

Example 9: Mystery

1. What does this algorithm compute?

@ The algorithm computes the sum of the squares of the first n
natural numbers.

@ Specifically, it calculates:
S=17+224+3+...4+n?

@ This can be written as:

32/43

Example 9: Mystery

2. What is its basic operation?

@ The basic operation of the algorithm is the multiplication
i x i, which computes the square of the integer i.

33/43

Example 9: Mystery

3. How many times is the basic operation executed?

@ The basic operation (squaring of /) is executed once for each
iteration of the ‘for' loop.

@ The loop runs from i = 1 to i = n, so the basic operation is
executed n times.

34/43

Example 9: Mystery

4. What is the efficiency class of this algorithm?
@ The algorithm has a time complexity of ©(n).

@ The loop runs n times, and each iteration involves a constant
amount of work (multiplication and addition).

35/43

Example 9: Mystery

5. Can we improve the algorithm?

@ The sum of the squares of the first n natural numbers has a
known closed-form formula:

5=Zi2: n(n+1)6(2n+1)

@ This formula allows us to compute the sum in constant time,
©(1), rather than iteratively summing the squares.

Improved Algorithm: ImprovedMystery(n)

L S« nx(n+1)x(2n+1)/6
2: return S

Efficiency Class: ©(1)

36/43

Real-world Example: RSA Encryption

RSA Encryption and Decryption

@ RSA is a widely used public-key cryptosystem for secure data
transmission.

@ Encryption: Given a message M, compute the ciphertext C as:
C=M® modn

@ Decryption: To recover M, compute:
M= C? mod n

@ Here, e is the public key exponent, and d is the private key
exponent.

Question: How well can we implement this?

37/43

Example 10: Computing x”

Task. The problem is to compute x" for any real number x and
integer n > 0.
Naive Algorithm:

Algorithm NaiveExponentiate(x, n)

power <— x

for i< 1ton—1do
power <— power X X

end for

return power

@2 PR

Time Complexity: ©(n)

38/43

Example 10: Computing x”

Improved Approach: Repeated Squaring. A better approach is
to employ the “repeated squaring” trick.
Case 1: When n is a power of 2:

o If n =2k for some integer k, compute x” using the following
algorithm:

Algorithm PowerOf2Exponentiate(x, k)

power < x

for i < 1to k do
power < power

end for

return power

2

@D PR

Time Complexity: O(log n)

39/43

Example 10: Computing x”

Case 2: General case: When n is not a power of 2:
o Key Idea: Represent n in binary form.

@ Let biby_1...b1by be the binary representation of n. This

means: }
n=> bg2°
q=0
@ Therefore,

o - XZZZO bg29 _ (X2O)b0 « (X21)b1 e X (X2k)bk

40/43

Example 10: Computing x”

Exponentiate Algorithm. The general case is handled by the
following algorithm:

Algorithm Exponentiate(x, n)

m < n; power < 1; z < x
while m > 0 do

while (m mod 2) = 0 do

m < m/2; z « z?

end while

m < m — 1; power < power X z
end while
return power

@ISR E

41/43

Example 10: Computing x”

Time Complexity Analysis
Outer While Loop:

@ The loop runs as long as m > 0. Each iteration either halves
m or decreases it by 1.

@ Since m decreases by at least a factor of 2 in each iteration,
the number of iterations is at most ©(log n).

Inner While Loop:

@ The inner loop also runs ©(log n) times, squaring z at each
step.

Final Time Complexity: ©(logn)

42/43

Example 10: Computing x”

Summary:

@ The repeated squaring method significantly reduces the
number of multiplications needed to compute x”.

@ The naive method takes ©(n) time, whereas the improved
method takes ©(log n) time.

@ The algorithm leverages binary representation to break down
the problem into smaller steps, making it efficient for large n.

Applications: This method is widely used in cryptography and
other fields requiring fast exponentiation.

43 /43

