
CS 2500: Algorithms
Lecture 26: Dynamic Programming: Unbounded Knapsack

Problem

Shubham Chatterjee

Missouri University of Science and Technology, Department of Computer Science

November 14, 2024

1 / 47



Unbounded Knapsack Problem

We are given a number of objects and a knapsack.

Unlike the 0/1 Knapsack Problem, each object can be taken
multiple times.

Let i = 1, 2, . . . , n denote the objects.

Each object i has:

a positive weight wi

a positive value vi

The knapsack has a weight capacity W .

Goal: Fill the knapsack in a way that maximizes the total
value of the included objects.

Let xi represent the number of times object i is included in the
knapsack, where xi ≥ 0 and is an integer.

2 / 47



Unbounded Knapsack Problem

Mathematical Formulation

maximize
n∑

i=1

xivi

subject to
n∑

i=1

xiwi ≤W

where:

vi > 0 and wi > 0

xi ∈ Z≥0 for 1 ≤ i ≤ n

Constraints:

vi and wi are constants for each item

xi are variables in the solution.

Objective: Maximize the total value without exceeding the weight
capacity W .

3 / 47



Difference: 0/1 Knapsack and Unbounded Knapsack

Choice of Items:
0/1 Knapsack: Each item can be included at most once in
the knapsack.
Unbounded Knapsack: Each item can be included multiple
times, allowing for unlimited instances of each item.

Problem Constraints:
0/1 Knapsack: Binary decision for each item — either take it
or leave it (0 or 1).
Unbounded Knapsack: For each item, there is flexibility to
take as many instances as needed, as long as the total weight
does not exceed the knapsack’s capacity.

4 / 47



Difference: 0/1 Knapsack and Unbounded Knapsack

Optimal Substructure:
0/1 Knapsack: Requires a decision for each item, making it
suitable for a 2D DP table (items by capacity).
Unbounded Knapsack: Focuses on each weight limit
independently, making it suitable for a 1D DP table with
each weight capacity considered separately.

Typical Applications:
0/1 Knapsack: Used when items are indivisible and can be
selected only once (e.g., selecting projects within budget).
Unbounded Knapsack: Used when items can be reused
multiple times (e.g., coin change problems, resource
allocation).

5 / 47



Key Idea for Unbounded Knapsack

In the Unbounded Knapsack problem:

When we include an item i with weight wi and value vi , we
reduce the remaining capacity by wi .

After including it once, we still have the option to include it
again, as long as the remaining capacity w − wi is sufficient.

6 / 47



Why Only w Is Needed in Unbounded Knapsack

This is a fundamental difference between the 0/1 Knapsack and
the Unbounded Knapsack problem.

In the 0/1 Knapsack problem, each item can be chosen only
once. Therefore, we track both the item index i and the
remaining weight w to make sure we don’t revisit the same
item.

This is why the recursive function for 0/1 Knapsack often
looks like Knapsack(i ,w), where i tracks which items have
already been considered.

7 / 47



Why Only w Is Needed in Unbounded Knapsack

In the Unbounded Knapsack problem, each item can be
chosen multiple times.

This makes the item index i less relevant in the recursion, as
we are allowed to reuse any item as many times as we want,
as long as it fits within the remaining weight.

Since items can be reused, we do not need a separate i index
to control which items can be included. We simply need to
know:

1 The remaining weight w .
2 For each weight w , we evaluate all items i independently, as

they can all be reconsidered multiple times.

Thus, the recursion only depends on w , and for each value of
w , we check each item i to see if it can fit.

8 / 47



Recurrence Relation for Unbounded Knapsack

9 / 47



How the Recurrence Handles Multiple Inclusions

1 If we include item i :

We compute Knapsack(w − wi ) + vi , which gives us the
maximum value achievable with the reduced capacity w − wi

plus the value of item i .
This means that after including item i , we are left with a
subproblem of capacity w − wi .

2 The subproblem Knapsack(w − wi ) is solved independently:

Because Knapsack(w) is defined as the maximum value
achievable with capacity w , if i fits within w − wi , it can be
chosen again in the solution for Knapsack(w − wi ).
Therefore, the recurrence will naturally allow for item i to be
included multiple times because every time we consider
Knapsack(w − wi ), item i is again a candidate for inclusion.

10 / 47



Example to Illustrate Multiple Inclusions

Suppose we have an item with:

Weight w1 = 2

Value v1 = 3

And we want to maximize the value for a knapsack with capacity
W = 6.
Using the recurrence:

1 First, we calculate Knapsack(6).
2 We check if we can include item 1 (since w1 = 2 ≤ 6):

If we include item 1, we get
v1 + Knapsack(6− 2) = 3 + Knapsack(4).

3 For Knapsack(4):
Again, we can include item 1, resulting in 3 + Knapsack(2).

4 For Knapsack(2):
We can include item 1 one more time, giving
3 + Knapsack(0) = 3 (since Knapsack(0) = 0).

The total value achieved by including item 1 multiple times is
3 + 3 + 3 = 9, which correctly accounts for multiple inclusions.

11 / 47



Unbounded Knapsack: Top-Down Approach with
Memoization

Steps for Top-Down Approach:

1 Start with the original problem (e.g., max value with full
weight capacity and all items available).

2 Recursively explore each option:

If item i is not included, recursively compute the solution
without item i .
If item i is included, recursively compute the solution with
reduced capacity W − wi but with i still available (as it can
be chosen multiple times).

3 Store results in a table (memoization) as each subproblem is
solved.

4 Retrieve results from the table when the same subproblem is
encountered again, avoiding redundant computation.

12 / 47



Unbounded Knapsack: Top-Down Approach with
Memoization

13 / 47



Unbounded Knapsack: Bottom-Up Approach

Steps for Bottom-Up Approach:

1 Initialize a list (e.g., 1D array) where each entry represents a
subproblem (e.g., max value achievable with a specific weight
capacity).

2 Fill the list iteratively, starting from the smallest subproblems
(e.g., capacity 0).

3 For each item i and each weight w , compute the maximum
value achievable by including i multiple times if possible.

4 The final entry in the list gives the answer to the original
problem.

14 / 47



Unbounded Knapsack: Bottom-Up Approach

Define a list V [w ] where:

w : The weight limit (from 0 to W ).
V [w ]: The maximum value achievable with weight capacity w .

Recurrence relation:

V [w ] =
n

max
i=1

{
V [w − wi ] + vi if wi ≤ w

V [w ] otherwise

Boundary conditions:

V [0] = 0 (zero weight capacity).

15 / 47



Unbounded Knapsack: Bottom-Up Approach

16 / 47



Unbounded Knapsack Example: Problem

Suppose we have:

Maximum weight capacity W = 5

Number of items n = 3

Item weights w = [1, 3, 4]

Item values v = [10, 40, 50]

Our goal is to maximize the total value without exceeding the
weight capacity W .

17 / 47



Unbounded Knapsack Example: Initialization

Initialize the DP array dp[0 . . .W ] with values 0:

dp = [0, 0, 0, 0, 0, 0]

18 / 47



Unbounded Knapsack Example: Capacity i = 1

For capacity i = 1:

Item 1 (w [1] = 1, v [1] = 10):

dp[1] = max(dp[1], v [1]+dp[1−w [1]]) = max(0, 10+dp[0]) = 10

Items 2 and 3: Skipped as their weights exceed i = 1.

Updated dp:
dp = [0, 10, 0, 0, 0, 0]

19 / 47



Unbounded Knapsack Example: Capacity i = 2

For capacity i = 2:

Item 1 (w [1] = 1, v [1] = 10):

dp[2] = max(dp[2], v [1]+dp[2−w [1]]) = max(0, 10+dp[1]) = 20

Items 2 and 3: Skipped as their weights exceed i = 2.

Updated dp:
dp = [0, 10, 20, 0, 0, 0]

20 / 47



Unbounded Knapsack Example: Capacity i = 3

For capacity i = 3:

Item 1 (w [1] = 1, v [1] = 10):

dp[3] = max(dp[3], v [1]+dp[3−w [1]]) = max(0, 10+dp[2]) = 30

Item 2 (w [2] = 3, v [2] = 40):

dp[3] = max(dp[3], v [2]+dp[3−w [2]]) = max(30, 40+dp[0]) = 40

Item 3: Skipped as its weight exceeds i = 3.

Updated dp:
dp = [0, 10, 20, 40, 0, 0]

21 / 47



Unbounded Knapsack Example: Capacity i = 4

For capacity i = 4:

Item 1 (w [1] = 1, v [1] = 10):

dp[4] = max(dp[4], v [1]+dp[4−w [1]]) = max(0, 10+dp[3]) = 50

Item 2 (w [2] = 3, v [2] = 40):

dp[4] = max(dp[4], v [2]+dp[4−w [2]]) = max(50, 40+dp[1]) = 50

Item 3 (w [3] = 4, v [3] = 50):

dp[4] = max(dp[4], v [3]+dp[4−w [3]]) = max(50, 50+dp[0]) = 50

Updated dp:
dp = [0, 10, 20, 40, 50, 0]

22 / 47



Unbounded Knapsack Example: Capacity i = 5

For capacity i = 5:

Item 1 (w [1] = 1, v [1] = 10):

dp[5] = max(dp[5], v [1]+dp[5−w [1]]) = max(0, 10+dp[4]) = 60

Item 2 (w [2] = 3, v [2] = 40):

dp[5] = max(dp[5], v [2]+dp[5−w [2]]) = max(60, 40+dp[2]) = 60

Item 3 (w [3] = 4, v [3] = 50):

dp[5] = max(dp[5], v [3]+dp[5−w [3]]) = max(60, 50+dp[1]) = 60

Final dp:
dp = [0, 10, 20, 40, 50, 60]

23 / 47



Unbounded Knapsack Example: Final Result

After processing all capacities, the maximum achievable value with
capacity W = 5 is stored in dp[5]:

dp[5] = 60

Therefore, the maximum achievable value with a knapsack
capacity of 5 is 60.

24 / 47



Rod Cutting Problem

A company wants to cut rods into pieces to maximize revenue.

Each piece cut from a rod has a length i and price pi .

Objective: Determine the maximum revenue obtainable by
cutting a rod of length n inches, given a table of prices pi for
each rod length i .

25 / 47



Rod Cutting Problem: Formal Problem Definition

Given:

A rod of length n and a price table p1, p2, . . . , pn.

Goal:

Maximize revenue rn by deciding where to cut the rod.
Formula: rn = max{pn, p1 + rn−1, p2 + rn−2, . . . , pn−1 + r1}.

Optimal substructure property: Each optimal solution to a
problem incorporates optimal solutions to related subproblems.

26 / 47



Rod Cutting Problem: Recurrence Relation

Defining the Subproblem

Let rn represent the maximum revenue obtainable for a rod of
length n.

For each length k ≤ n, rk represents the maximum revenue for
a rod of length k .

The problem can be broken down into smaller subproblems by
considering cuts at different lengths.

27 / 47



Rod Cutting Problem: Recurrence Relation

Considering All Possible Cuts

To maximize revenue for a rod of length n, we need to
consider all possible lengths for the first cut.

If the first cut is at length i :

We get a piece of length i (revenue = pi ).
The remaining length is n − i , with maximum revenue rn−i .

For each cut i , the total revenue is pi + rn−i .

28 / 47



Rod Cutting Problem: Recurrence Relation

Base Case

If there is no rod (length n = 0), the revenue is zero:

r0 = 0

29 / 47



Rod Cutting Problem: Recurrence Relation

Recursive Case

To find the maximum revenue rn for a rod of length n, we
consider all possible cuts:

rn = max
1≤i≤n

{pi + rn−i}

This formula captures the idea that the revenue for a rod of
length n can be obtained by maximizing over all possible ways
of making a first cut.

30 / 47



Rod Cutting Problem: Recurrence Relation

Recurrence Relation

rn =

{
0 if n = 0,

max1≤i≤n{pi + rn−i} if n > 0.

rn: Maximum revenue for a rod of length n.

pi : Price of a piece of rod of length i .

rn−i : Maximum revenue for the remaining rod of length n − i .

31 / 47



Rod Cutting Problem: Recurrence Relation

Key Points

The recurrence relation divides the problem into subproblems,
where each subproblem is a smaller rod-cutting problem.

The recurrence leverages the optimal substructure of the
problem: each solution to a rod of length n can be built from
solutions of shorter lengths.

This recurrence relation serves as the basis for both top-down
(memoized) and bottom-up dynamic programming solutions.

32 / 47



Rod Cutting Problem: Example

Problem: Sterling Enterprises is a company that buys long steel
rods and cuts them into shorter segments to maximize revenue.
The company has a price table (as shown below) which indicates
the selling price for rods of different lengths. The objective is to
determine the optimal way to cut a rod of length n inches to
maximize the revenue generated by selling the pieces.

For n = 4, consider possible ways to cut the rod into pieces of
length i where 1 ≤ i ≤ n, and calculate the revenue for each cut.

length i 1 2 3 4 5 6 7 8 9 10

price pi 1 5 8 9 10 17 17 20 24 30

33 / 47



Rod Cutting Problem: Example

Figure: The 8 possible ways of cutting up a rod of length 4. Above each
piece is the value of that piece, according to the sample price table on
Slide 27. The optimal strategy is part (c)–cutting the rod into two pieces
of length 2–which has total value 10.

34 / 47



Rod Cutting Problem: Top-Down with Memoization

35 / 47



Rod Cutting Problem: Bottom-Up

36 / 47



Coin Change II: Maximum Number of Ways

Given:
A set of coins with distinct denominations {c1, c2, . . . , cm}.
A target amount n.

Objective: Find the maximum number of ways to make
amount n using the given coins.

Example:

Coins: {1, 2, 5}, Amount: n = 5
Output: 4 ways

1 5
2 2, 2, 1
3 2, 1, 1, 1
4 1, 1, 1, 1, 1

37 / 47



Recall: Subset Sum Problem

Based on the 0/1 Knapsack Problem.

Given:

A set of integers, {a1, a2, . . . , am}.
A target sum S .

Objective: Determine if there exists a subset of integers that
adds up to the target sum S .

Example:

Set: {3, 34, 4, 12, 5, 2}
Target sum: S = 9
Output: Yes (subset {4, 5} adds up to 9)

38 / 47



Recall: Subset Sum Problem

Approach:

Define dp[i ][j ] as True if a subset of the first i elements can
sum to j , otherwise False.

Recurrence Relation:

dp[i ][j ] = dp[i − 1][j ] or dp[i − 1][j − ai ]

where ai is the current element.

Base Case:

dp[0][0] = True: A sum of 0 can be achieved with no elements.
For all j > 0: dp[0][j ] = False.

39 / 47



Coin Change II: Parallel with Subset Sum Problem

Both problems seek ways to reach a target sum or amount
using given values.

Subset Sum: Checks if there exists a subset with the target
sum.

Coin Change: Counts the number of ways to reach the
target amount.

Differences:

Element Repetition: In Subset Sum, each element is used
only once. In Coin Change II, coins can be reused multiple
times.
Goal: Subset Sum is about existence, while Coin Change II is
about counting ways.

40 / 47



Adapting Subset Sum to Coin Change II

Subset Sum Recurrence Relation

dp[i ][j ] = dp[i − 1][j ] or dp[i − 1][j − ai ]

Interpretation: Checks if it is possible to form sum j using
the first i elements.

Explanation: Each element can be used at most once, so we
consider two options:

Exclude the current element ai : dp[i ][j ] = dp[i − 1][j ].
Include the current element ai : dp[i ][j ] = dp[i − 1][j − ai ].

41 / 47



Adapting Subset Sum to Coin Change II

Coin Change II Recurrence Relation

dp[j ] = dp[j ] + dp[j − ci ]

Interpretation: Counts the number of ways to make amount
j by including coin ci multiple times.

Explanation: To account for reuse of coins:

Transition from a 2D True/False DP table to a 1D integer
DP array for counts.
Add dp[j − ci ] to dp[j ] to accumulate the number of ways.

Key Change: Replace True/False checks with integer
addition to count combinations, and allow repeated use of
elements.

42 / 47



Coin Change II: Recurrence Relation

Define dp[j ] as the number of ways to make amount j using
the available coins.

Base Case: dp[0] = 1 (1 way to make amount 0, by using no
coins).

For each coin ci and each amount j ≥ ci :

Add the number of ways to make amount j − ci to dp[j ].
Formula:

dp[j ] = dp[j ] + dp[j − ci ]

Intuition: dp[j − ci ] represents ways to make j if we include
coin ci .

43 / 47



Coin Change II: Bottom-Up Algorithm

Algorithm 1 Coin Change: Maximum Number of Ways

Require: C : Array of coin denominations, n: Target amount
Ensure: Number of ways to make amount n
1: function CoinChangeII(C , n)
2: Initialize dp[0 . . . n] with dp[0]← 1 and dp[j ]← 0 for j > 0
3: for each coin c in C do
4: for j = c to n do
5: dp[j ]← dp[j ] + dp[j − c]
6: end for
7: end for
8: return dp[n]
9: end function

44 / 47



Coin Change II: Example

Coins: {1, 2, 5}, Target Amount: n = 5

Initial DP Array: dp = [1, 0, 0, 0, 0, 0]

Steps for Each Coin

Using Coin 1:

For amount 1: dp[1] = dp[1] + dp[1− 1] = 0 + 1 = 1

For amount 2: dp[2] = dp[2] + dp[2− 1] = 0 + 1 = 1

For amount 3: dp[3] = dp[3] + dp[3− 1] = 0 + 1 = 1

For amount 4: dp[4] = dp[4] + dp[4− 1] = 0 + 1 = 1

For amount 5: dp[5] = dp[5] + dp[5− 1] = 0 + 1 = 1

DP Array after using coin 1: dp = [1, 1, 1, 1, 1, 1]

45 / 47



Coin Change II: Example

Coins: {1, 2, 5}, Target Amount: n = 5

DP Array after using coin 1: dp = [1, 1, 1, 1, 1, 1]

Steps for Each Coin

Using Coin 2:

For amount 2: dp[2] = dp[2] + dp[2− 2] = 1 + 1 = 2

For amount 3: dp[3] = dp[3] + dp[3− 2] = 1 + 1 = 2

For amount 4: dp[4] = dp[4] + dp[4− 2] = 1 + 2 = 3

For amount 5: dp[5] = dp[5] + dp[5− 2] = 1 + 2 = 3

DP Array after using coin 2: dp = [1, 1, 2, 2, 3, 3]

46 / 47



Coin Change II: Example

Coins: {1, 2, 5}, Target Amount: n = 5

DP Array after using coin 2: dp = [1, 1, 2, 2, 3, 3]

Steps for Each Coin

Using Coin 5:

For amount 5: dp[5] = dp[5] + dp[5− 5] = 3 + 1 = 4

DP Array after using coin 5: dp = [1, 1, 2, 2, 3, 4]

Result: There are dp[5] = 4 ways to make amount 5 using coins
{1, 2, 5}.

47 / 47


