CS 2500: Algorithms

Lecture 25: Dynamic Programming: Longest Common
Subsequence

Shubham Chatterjee

Missouri University of Science and Technology, Department of Computer Science

November 12, 2024

1/51

Introduction to Longest Common Subsequence (LCS)

@ Biological applications often compare DNA sequences of
different organisms.

@ A DNA strand is a string of bases represented by the letters:
A (adenine), C (cytosine), G (guanine), and T (thymine).

@ We can express DNA strands as sequences over the set
{A,C,G, T}.

@ Example DNA sequences:

o 5; = ACCGGTCGAGTGCGCGGAAGCCGGCCGAA
o 5, = GTCGTTCGGAATGCCGTTGCTCTGTAAA

@ Goal: Measure similarity between S; and S».

2/51

Measuring DNA Sequence Similarity

e Different approaches to measuring similarity:
o Substring similarity: Check if one sequence is a substring of
the other.
e Edit distance: Number of changes needed to transform one
sequence into another.
o Common subsequence similarity: Find the longest sequence of
bases appearing in both sequences in the same order.

@ We focus on finding the longest common subsequence (LCS)
as a similarity measure.

3/51

Example of LCS

@ Consider sequences 51 and S;:

o 5; = ACCGGTCGAGTGCGCGGAAGCCGGCCGAA
o 5, = GTCGTTCGGAATGCCGTTGCTCTGTAAA

@ The longest common subsequence (LCS) is:
S3 = GTCGTCGGAAGCCGGCCGAA

@ The LCS gives a measure of similarity between two DNA
sequences by finding a maximal length sequence common to
both.

4/51

e A subsequence of a sequence X = (x1,X2,...,Xm) is a
sequence Z = (z1, zp, . .., Zx) Where:
e There exists a strictly increasing sequence of indices
i1,i2, -, ik such that x; = z; forall j =1,2,... k.
e Example: Z = (B, C,D, B) is a subsequence of
X =(A,B,C,B,D,A,B) with indices 2,3,5,7.

5/51

Common Subsequence

@ Given two sequences X and Y/, a sequence Z is a common
subsequence if Z is a subsequence of both X and Y.
o Example:
o X=(A,B,C,B,D,A, B)
o Y=(B,D,C,AB,A
e One common subsequence is Z = (B, C, A), but it is not the
longest common subsequence.

6/51

Longest Common Subsequence

@ In the LCS problem, given sequences X = (x1, x2, ..., Xm) and
Y = {y1,¥2,...,¥n), the goal is to find the longest sequence
that is a subsequence of both X and Y.

e Example LCS:

e For X = (A, B,
B

,B,D,A,B)and Y = (B,D,C,A,B,A)
o The LCSis (B, C,B, A

C)
C,B,A).

7/51

Brute-Force Approach to LCS

@ The brute-force approach for solving the LCS problem:
e Enumerate all subsequences of X.
e For each subsequence of X, check if it is also a subsequence of
Y.
o Keep track of the longest common subsequence found.
@ This approach requires exponential time, O(2™), as there are
2™ subsequences of X.

@ Impractical for long sequences due to the high time
complexity.

8/51

Optimal Substructure Property of LCS

The LCS problem has an optimal-substructure property.

Optimal substructure means an optimal solution to the
problem contains within it optimal solutions to subproblems.

@ For LCS, natural subproblems correspond to pairs of prefixes
of the input sequences.

@ Define the i-th prefix of X = (x1,x2,...,Xxm) as:
Xi = (X1, %2, ..., X)
e Example: If X = (A,B,C,B,D, A, B), then

X: = (A, B, C,B).

9/51

Theorem: Optimal Substructure of an LCS

o Let X = (x1,x2,...,xm) and Y = (y1,¥2,...,¥n) be
sequences.

o Let Z=(z1,2p,...,2x) be any LCS of X and Y.

@ Theorem:

@ |If the last characters of X and Y are the same (i.e., xm = ya),
then the last character of Z must also be x,,, and the rest of Z
(denoted Zx_1) is an LCS of X;,—1 and Y,,_1, which are X and
Y without their last characters.

@ If the last characters of X and Y are different (i.e., xm # y¥n)
and zx # Xp, then Z is an LCS of X,,_; and Y.

© Similarly, if X, # y, and zx # y,, then Z is an LCS of X and
Yo_1.

10/51

Proof of Theorem

Case 1: x,, = y,
If the last characters of X and Y are the same, i.e., x;, = yp, then:

@ We claim that the last character of Z (which is an LCS of X
and Y) must be Xm = yn, SO Zk = Xm = Yn.

o If this were not true (i.e., if zx # xm = yn), we could add x,
to Z, forming a common subsequence of X and Y with a
length of k + 1. This contradicts the assumption that Z is a
longest common subsequence.

Therefore, zx = X = yn, and the remainder of Z (denoted Zx_1)
is an LCS of X,,_1 and Y,_1.

11/51

Proof of Theorem

Case 1: Example
Let:

e X=(A,B,C,D,E)
e Y=(C,B,D,E)
If the LCS is Z = (C, D, E), observe that:
@ The last characters of X and Y are both E (i.e.,
x5 = ya = E).
@ Since Z also ends with E, the remaining subsequence

Zk—1 = (C, D) must be an LCS of the prefixes
X; = (A,B,C,D) and Y3 = (C, B, D).

12/51

Proof of Theorem

Case 2: x,, # y, and zx # xn,
If xm # yn and the last character of Z (i.e., zx) is not equal to xpm,
then:

@ Z must be a longest common subsequence of X,,,_1 and Y.

If this were not the case (i.e., if there were a common subsequence
W of Xpm—1 and Y with a length greater than k), then W would
also be a common subsequence of X and Y, contradicting the
assumption that Z is an LCS of X and Y.

13/51

Proof of Theorem

Case 2: Example
Let:

e X=(AB,C,D,F)
e Y=(B,C,D,E)
Suppose the LCS is Z = (B, C, D).
@ The last characters of X and Y are F and E, so x5 # ya.

@ Since Z does not contain x5 or y4, Z must be an LCS of
either:
o Xpm_1=(AB,C
e X=(A,B,C,D,F) and Y,_ 1:< C D).
s

B, C
@ Thus, Z= (B, C,D) is an LCS of both cases.

,D)yand Y =(B,C,D,E), o

14 /51

Proof of Theorem

Case 3: x,, # yn and zx # y,
If Xm # yn and zx # y,, then:

@ Z must be a longest common subsequence of X and Y,_.
If this were not the case (i.e., if there were a common subsequence
W of X and Y,_1 with a length greater than k), then W would
also be a common subsequence of X and Y, contradicting the
assumption that Z is an LCS of X and Y.

15/51

Proof of Theorem

Case 3: Example
Let:

e X=(AB,C,D)
e Y=(B,C,EF)
Suppose the LCS is Z = (B, C).
@ The last characters of X and Y are D and F, so x4 # ys.

@ Since Z does not contain x4 or y4, Z must be an LCS of
either:

o X,1=(A,B,Cyand Y =(B,C,E,F), or
o X=(A,B,C,D) and Y,_; = (B, C,E).

@ Thus, Z = (B, C) is an LCS of both cases.

16 /51

Significance of Theorem

@ The theorem characterizes the structure of LCS.

@ Shows that any LCS of two sequences contains within it an
LCS of prefixes of the sequences.

@ This recursive structure underpins the dynamic programming
approach to solving the LCS problem.

17/51

LCS Problem Setup and Notation

Problem: Given two sequences:
o X = (x1,x2,...,Xm)
oY= <y1’y27"'7yn>

Our goal is to find the longest common subsequence (LCS) of X
and Y.

Optimal Substructure: The theorem tells us that to solve the
LCS problem, we need to examine specific subproblems:

o If the last characters of X and Y match (xm, = yn), then they
must be part of the LCS.

o If the last characters do not match (xp, # y,), we consider
two possibilities to find the longer subsequence.

18/51

LCS: Top-Down Approach with Memoization

Base Case:

The LCS problem requires us to consider the lengths of the
subsequences as we recurse.

If either X or Y has length 0 (i.e., m =0 or n = 0), then no
common subsequence exists.

Therefore, the base case for the recursive function is:
LCS(Xm, Yn) =0 ifm=0o0orn=0

This base case stops the recursion when we reach the end of
either sequence.

19/51

LCS: Top-Down Approach with Memoization

Recursive Case: Matching Last Characters
@ When the last characters of X and Y match (xm = yn):

e The character x,, = y, is part of the LCS.
o We can reduce both sequences by one character to solve the
subproblem for the remaining prefixes X;,_1 and Y,_1.

@ Recursive function for this case:
LCS(Xm, Yn) = LCS(Xm—1, Ya—1) + 1 if Xm = yn

@ This case follows from the optimal substructure property
(Theorem, Case 1).

20/51

LCS: Top-Down Approach with Memoization

Recursive Case: Non-Matching Last Characters
@ When the last characters of X and Y do not match
(Xm # yn):
e We cannot include x,, or y, in the LCS directly, but we need
to consider two possible subproblems to find the longest
subsequence.

@ The recursive cases:
© Compute the LCS of X,,_1 and Y (ignoring the last character
of X):
LCS(Xm—1, Ya)
@ Compute the LCS of X and Y,_; (ignoring the last character
of Y):
LCS(Xpm, Ya-1)
@ Since we want the longest common subsequence, we take the
maximum of these two values:

LCS(Xm, Ya) = max(LCS(Xm—1, Yn), LCS(Xm, Yn-1)) if xm % ¥n

21/51

LCS: Top-Down Approach with Memoization

Recursive Formula for LCS:

@ Combining both cases, we obtain the recursive formula:

0 ifm=0o0rn=0
LCS(X"M Y;L) - LCS(Xanl, }}‘;’i.*l) +1 if m > O;” > na and Ty — Yn
lIlH.X(LCS(X,nfl, Kt)i LCS(XHH Y, 1)) ifm>0,n>0, and z,, # vy,

@ This formula defines the length of an LCS of the prefixes X,
and Y, of sequences X and Y.

22/51

LCS: Top-Down Approach with Memoization

Example:
e Let X=1(a, b,c,d g h)and Y=1(a, b e df h,r.
@ Start with the last characters:
e X = h and y7 = r, which are not equal.

@ Apply the recursive cases:

Q Calculate LCS(Xim—1, Yn) = LCS(X[1...5], Y[1...7]).
@ Calculate LCS(Xy, Yo—1) = LCS(X][1...6], Y[1...6]).

@ Continue until reaching the base case.

@ The final answer is the length of the longest LCS found.

23/51

Approach with Memoization

Algorithm 1 LCS - Top-Down with Memoization

Require: X: string of length m, Y: string of length n

Ensure: Length of LCS of X and YV
1: Initialize a memoization table L[0...m][0...n] with all values set to —1
2: function LCS(i, j)

3:

10:
11:
12:
13:
14:

if i=0or j =0 then
return 0
end if
if L[¢][j] # —1 then
return L[i][j]
end if
if 2; = y; then
L[i|[j] « LCS(i — 1,7 —1)+1
else
L[i][7] « max(LCS(: — 1,7), LCS(i, 5 — 1))
end if
return Li][j]

15: end function
16: Compute the solution: Call LCS(m,n)

24 /51

LCS: Bottom-Up Approach

Bottom-Up Table Construction:

o Define a 2D table L[0...m][0... n] where L[i][j] represents
the length of the LCS of X[1.../] and Y[1...j].
o Base cases:
o L[0][j] = O for all j (LCS with an empty string is 0).
o L[i][0] = 0 for all i.

@ Recurrence relation:

L[i]U]:{L[i—l][j—l]+1 if x; = yj
max(L[i —][], L[= 1]) if x # y;

e Final result: L[m][n] contains the length of the LCS of X and
Y.

25/51

S: Bottom-Up Approach

Algorithm 2 LCS - Bottom-Up Approach
Require: X: string of length m, Y: string of length n
Ensure: Length of LCS of X and Y
1: Initialize a table L[0...m][0...n] with all values set to 0
2: for i =1 tom do
3: for j =1 ton do

4: if x; = y; then

5 Lii[j] « Lz —1)[j — 1]+ 1

6: else

7: LId][j] <= max(L[i — 1][5], L[i][7 — 1])

8: end if

9: end for

10: end for

11: return L{m|[n] > Length of the LCS of X and Y

26/51

LCS: Bottom-Up Approach

Example:
e X =(AB,C,D)
e Y=(B,D,C,A)

Fill the table L[i][/] step-by-step, using the recurrence relation.

Use base cases and recurrence to compute each entry.
The final result at L[m][n] will provide the length of the LCS.

27 /51

LCS: Bottom-Up Approach—Filling the DP Table for LCS

Goal: Fill each cell dpli][j] to find the longest common
subsequence (LCS) of X and Y.

e Each cell dpli][j] represents the LCS length of prefixes X[0 : i]
and Y[0:j].
@ Check three neighboring cells:
o Diagonal (Top-Left Neighbor): dp[i — 1][j — 1]
e Use if X[i —1] = Y[j — 1], indicating a match.
o Set dp[i][j] = dp[i — 1][j — 1] + 1.
o Left Neighbor: dp[i][j — 1]
o Use if X[i — 1] # Y[j — 1]. Take the max to carry forward the
LCS length.
e Top Neighbor: dp[i — 1][/]
o Use if X[i —1] # Y[j — 1]. Take the max to carry forward the
LCS length.

28/51

LCS: Bottom-Up Approach—Filling the DP Table for LCS

Goal: Fill each cell dpli][j] to find the longest common
subsequence (LCS) of X and Y.

o Mnemonic:

o If characters match: Use Diagonal cell +1.
e If characters don't match: Take the max of Left and Top
neighbors.

e Final value at dp[m][n] gives the length of the LCS of X and
Y.

Example Cell Filling

e Match? Diagonal cell +1
@ No match? Max of Left and Top

29/51

LCS: Bottom-Up Approach

Initial Table:

@ Initialize the table L with all values set to 0.
@ Use the rule:

e Match? Diagonal +1
e No Match? Max of Top and Left

LA |j=0]j=1]/=2]J
i=0[0 | 0 [0 [0 | 0O

Il
w
.
Il
IN

i=1 0
i=2 0
i=3 0
i=4 0

30/51

LCS: Bottom-Up Approach

Filling Row /i = 1 (Comparing x; = A)

LIG] | J
i=0
i=1
=2
i=3
i=4

0

Jj=1
0
0

.
o ol ll
N

j=3]j=4
0 0
0 1

oo oo ol

@ j=1:x3=Aand y; = B# A= Max of Top and Left = 0.
@ j=2: x1=Aand y» = D # A= Max of Top and Left = 0.
@ j=3: x1 =Aand y3 = C # A= Max of Top and Left = 0.
@ j=4: x1=Aand yy = A= Diagonal + 1 =1.

31/51

LCS: Bottom-Up Approach

Filling Row i = 2 (Comparing x; = B)

LIG] | J
i=0
i=1
=2
i=3
i=4

0/ j=1]j=21]Jj

= o ol ll
— o ol
— o ol ll
- ol

oo oo ol

@ j=1: xp = B and y; = B = Diagonal+1 = 1.

@ j=2: xp =B and y» = D # B = Max of Top and Left = 1.
@ j=3: xp =B and y3 = C # B = Max of Top and Left = 1.
@ j=4: x, =B and ys = A# B = Max of Top and Left = 1.

32/51

LCS: Bottom-Up Approach

Filling Row i = 3 (Comparing x3 = C)

LU |j=0]j=1]j=2]j=3|/=4
i=0] 0 0 0 0 0
i=1| 0 0 0 0 1
i=2| 0 1 1 1 1
i=3| 0 1 1 2 2
i=4| 0

@ j=1: x3=C and y; = B# C = Max of Top and Left = 1.
@ j=2: x3=C and yp = D # C = Max of Top and Left = 1.
@ j=3: x3=C and y3 = C = Diagonal + 1 = 2.

@ j=4: x3=C and ys = A# C = Max of Top and Left = 2.

33/51

LCS: Bottom-Up Approach

Filling Row i = 4 (Comparing x; = D)

LU |j=0]j=1]j=2]j=3|/=4
i=0] 0 0 0 0 0
i=1| 0 0 0 0 1
i=2| 0 1 1 1 1
i=3| 0 1 1 2 2
i=4| 0 1 2 2 2

@ j=1: x4=D and y3 = B# D = Max of Top and Left = 1.
@ j=2: x4 =D and y» = D = Diagonal +1 = 2.

@ j=3: x4 =D and y3 = C # D = Max of Top and Left = 2.
@ j=4: x4 =D and ys = A# D = Max of Top and Left = 2.

34/51

LCS: Summary

Key Points:

@ The LCS problem can be solved using both Top-Down and
Bottom-Up dynamic programming approaches.

@ Top-Down uses recursion and memoization, while Bottom-Up
fills the table iteratively.

@ Both approaches achieve O(m - n) time complexity.

@ The Bottom-Up approach is often preferred due to lower
recursion overhead.

35/51

Problem: Longest Common Substring (LCSstr)

Problem Definition:
@ Given two strings:
o X = (x1,X2,. ., Xm)
o Y ={(m,Y2- s Yn)
@ Find the longest contiguous substring that appears in both X
and Y.
Example:

@ For X = "ABABC” and Y = "BABCA", the longest common
substring is “BABC”, with length 4.

36/51

Recurrence Relation

Comparing Recurrence Relations for LCS and LCSstr
@ LCS Recurrence Relation:
o If X[i] = Y[j]:

LN =Li-1-1+1

o If X[i] # Y[j]:
LI = max(L[i = 1][j], LU — 1)
e This allows non-contiguous subsequences by taking the
maximum of subproblems without resetting the count.
@ LCSstr Recurrence Relation:

o If X[i] = Y[j]:

LIl =Li -1 —1]+1
o If X[i] # Y[j]:

LI =0

e For LCSstr, contiguity is required, so any mismatch resets the

count to 0, unlike LCS.
37/51

Recurrence Relation

Using LCS to Derive LCSstr Recurrence
@ The LCS recurrence gives a framework to compare elements
X[i] and Y[j].
@ For LCSstr, we adapt this by resetting L[/][j] = 0 on
mismatches to enforce contiguity.

@ This modification creates a recurrence tailored for contiguous
substrings.

38/51

LCSstr: Base Case and Algorithm Outline

Base Case:
e L[i][0] = 0 and L[0][j] = O for all i and j.
@ If either string has length 0, the longest common substring
length is 0.
Algorithm Outline (Bottom-Up):

@ Initialize a 2D table L with all values set to 0.
@ For each j from 1 to m:
e For each j from 1 to n:
o I X[i—1] = Y[j - 1]: L[i|[j] = L[i — 1][j — 1] + 1.
o Update ‘maxLength’ if L[/][j] exceeds the current ‘'maxLength’.
o Otherwise, set L[i][j] = 0.
@ ‘maxLength’ stores the length of the longest common
substring.

39/51

Pseudo-Code for LCSstr (Bottom-Up Approach)

Algorithm 1 LCSstr - Bottom-Up Approach
Require: X: string of length m, Y: string of length n
Ensure: Length of the longest common substring
1: Initialize a table L[0...m][0...n] with all values set to 0
2: maxLength < 0
3: for i=1to mdo

4: for j=1to ndo

5: if X[i —1] = Y[j — 1] then

6: LI/« L[i = 1] — 1] +1

7: maxLength = max(maxLength, L[/][j])
8: else

9: L[i[j] <0

10: end if

11: end for

12: end for

13: return maxLength

40/51

LCSstr: Example

Example: X = "ABABC" and Y = “BABCA"

LEUl | j=0]j=1]j=2]|j=3|j=4|/=5
i=0[0 | 0 [0 [0 [0 O
i=1] 0 | 0 1 0 | o0 1
i=2] 0 1 0o | 2 | 0 | 0
i=3] 0 | 0 | 2| 0 | 0] O
i=4] 0 1 0o | 3| 0] 0
i=5] 0 | 0 | 0 | 0 | 4 | 0

Result: The longest common substring is “BABC” with length 4.

41/51

LCSstr: Complexity

Complexity:

e Time Complexity: O(m x n), where m and n are the lengths
of X and Y.

e Space Complexity: O(m x n).

42/51

Problem: Minimum Insertions and Deletions

Goal: Given two strings A and B, find the minimum number of
insertions and deletions required to transform A into B.
Example:

e A= "heap”
@ B = “ped”
Solution:
@ Convert A to B with minimum operations.

@ Output: Number of deletions and insertions needed.

43/51

Key ldea: Using Longest Common Subsequence (LCS)

Observation:

@ The Longest Common Subsequence (LCS) of A and B
represents the longest sequence that can remain unchanged in
both strings.

@ Any character in A that is not part of the LCS must be
deleted.

@ Any character in B that is not part of the LCS must be
inserted.

44 /51

Key ldea: Using Longest Common Subsequence (LCS)

Transforming A to B:
@ Let LCS_length be the length of the LCS of A and B.

@ Then:

o Deletions = A_length - LCS_length
o Insertions = B_length - LCS_length
Example:
o A= "heap”, B = “pea”

e LCS_length = 2 (Longest Common Subsequence:
o Deletions =4 —-2=2

ea”)

@ Insertions =3-2=1

o Total Operations = 2 deletions + 1 insertion = 3

45 /51

Algorithm Pseudo-Code

Algorithm 2 Minimum Insertions and Deletions to Convert A to B
Require: A, B: input strings

Ensure: Minimum number of insertions and deletions to convert A
to B

Compute the length of LCS, LCS_length, using DP

Deletions = len(A) — LCS_length

Insertions = len(B) — LCS_length

return (Deletions, Insertions)

nrl i A

46 /51

Problem: Longest Palindromic Subsequence (LPS)

Goal: Given a string X, find the length of the longest subsequence
of X that is a palindrome.
Example:

o For X = "BBABCBCAB", the longest palindromic
subsequence is "BABCBAB" with length 7.

Using LCS to Solve LPS:

@ We can leverage the Longest Common Subsequence (LCS)
concept to find the LPS.

@ This approach simplifies LPS by transforming it into an LCS
problem.

47/51

Key Idea: Using LCS on the Reversed String

Steps:
@ Let X be the original string, and X, be its reverse.
@ Find the LCS of X and Xey.
@ The LCS between X and X, will be the longest palindromic
subsequence.

Why This Works:
@ A palindrome reads the same forward and backward.

@ Thus, the longest sequence common to both X and its reverse
Xrev Must be palindromic.

48/51

Algorithm for LPS Using LCS

Algorithm 1 Longest Palindromic Subsequence via LCS

Require: X: input string of length m

Ensure: Length of the longest palindromic subsequence in X
1: Let X, be the reverse of X
2: Initialize a 2D array L[0...m][0...m] for LCS computation
3: for i =0 tom do

4 for j =0 to m do

5: if i==0o0r j == 0 then

6: L[][j] <0 > Base case: empty strings
7: else if X[i — 1] == Xi.y[j — 1] then

8: Li[j] < Ll —1][j — 1] +1

9: else

10: L[¢][j] < max(L[i — 1][5], L[{][7 — 1])

11: end if

12: end for

13: end for

14: return Lm|[m] > Length of the longest palindromic subsequence

49/51

Example: LPS Using LCS

Example: X = “BBABCBCAB"
@ Reverse X: X,y = "BACBCBABB"
@ Compute LCS of X and Xey.
@ The LCS length gives the length of the LPS, which is 7.
@ The longest palindromic subsequence is "BABCBAB".

50 /51

LPS: Complexity

Time Complexity: O(m?), where m is the length of the string X.
Space Complexity: O(m?), due to the 2D DP table.

51/51

