
CS 2500: Algorithms
Lecture 25: Dynamic Programming: Longest Common

Subsequence

Shubham Chatterjee

Missouri University of Science and Technology, Department of Computer Science

November 12, 2024

1 / 51



Introduction to Longest Common Subsequence (LCS)

Biological applications often compare DNA sequences of
different organisms.

A DNA strand is a string of bases represented by the letters:
A (adenine), C (cytosine), G (guanine), and T (thymine).

We can express DNA strands as sequences over the set
{A,C ,G ,T}.
Example DNA sequences:

S1 = ACCGGTCGAGTGCGCGGAAGCCGGCCGAA
S2 = GTCGTTCGGAATGCCGTTGCTCTGTAAA

Goal: Measure similarity between S1 and S2.

2 / 51



Measuring DNA Sequence Similarity

Different approaches to measuring similarity:

Substring similarity: Check if one sequence is a substring of
the other.
Edit distance: Number of changes needed to transform one
sequence into another.
Common subsequence similarity: Find the longest sequence of
bases appearing in both sequences in the same order.

We focus on finding the longest common subsequence (LCS)
as a similarity measure.

3 / 51



Example of LCS

Consider sequences S1 and S2:

S1 = ACCGGTCGAGTGCGCGGAAGCCGGCCGAA
S2 = GTCGTTCGGAATGCCGTTGCTCTGTAAA

The longest common subsequence (LCS) is:

S3 = GTCGTCGGAAGCCGGCCGAA

The LCS gives a measure of similarity between two DNA
sequences by finding a maximal length sequence common to
both.

4 / 51



Subsequence

A subsequence of a sequence X = ⟨x1, x2, . . . , xm⟩ is a
sequence Z = ⟨z1, z2, . . . , zk⟩ where:

There exists a strictly increasing sequence of indices
i1, i2, . . . , ik such that xij = zj for all j = 1, 2, . . . , k.

Example: Z = ⟨B,C ,D,B⟩ is a subsequence of
X = ⟨A,B,C ,B,D,A,B⟩ with indices 2, 3, 5, 7.

5 / 51



Common Subsequence

Given two sequences X and Y , a sequence Z is a common
subsequence if Z is a subsequence of both X and Y .

Example:

X = ⟨A,B,C ,B,D,A,B⟩
Y = ⟨B,D,C ,A,B,A⟩
One common subsequence is Z = ⟨B,C ,A⟩, but it is not the
longest common subsequence.

6 / 51



Longest Common Subsequence

In the LCS problem, given sequences X = ⟨x1, x2, . . . , xm⟩ and
Y = ⟨y1, y2, . . . , yn⟩, the goal is to find the longest sequence
that is a subsequence of both X and Y .

Example LCS:

For X = ⟨A,B,C ,B,D,A,B⟩ and Y = ⟨B,D,C ,A,B,A⟩
The LCS is ⟨B,C ,B,A⟩.

7 / 51



Brute-Force Approach to LCS

The brute-force approach for solving the LCS problem:

Enumerate all subsequences of X .
For each subsequence of X , check if it is also a subsequence of
Y .
Keep track of the longest common subsequence found.

This approach requires exponential time, O(2m), as there are
2m subsequences of X .

Impractical for long sequences due to the high time
complexity.

8 / 51



Optimal Substructure Property of LCS

The LCS problem has an optimal-substructure property.

Optimal substructure means an optimal solution to the
problem contains within it optimal solutions to subproblems.

For LCS, natural subproblems correspond to pairs of prefixes
of the input sequences.

Define the i-th prefix of X = ⟨x1, x2, . . . , xm⟩ as:

Xi = ⟨x1, x2, . . . , xi ⟩

Example: If X = ⟨A,B,C ,B,D,A,B⟩, then
X4 = ⟨A,B,C ,B⟩.

9 / 51



Theorem: Optimal Substructure of an LCS

Let X = ⟨x1, x2, . . . , xm⟩ and Y = ⟨y1, y2, . . . , yn⟩ be
sequences.

Let Z = ⟨z1, z2, . . . , zk⟩ be any LCS of X and Y .

Theorem:
1 If the last characters of X and Y are the same (i.e., xm = yn),

then the last character of Z must also be xm, and the rest of Z
(denoted Zk−1) is an LCS of Xm−1 and Yn−1, which are X and
Y without their last characters.

2 If the last characters of X and Y are different (i.e., xm ̸= yn)
and zk ̸= xm, then Z is an LCS of Xm−1 and Y .

3 Similarly, if xm ̸= yn and zk ̸= yn, then Z is an LCS of X and
Yn−1.

10 / 51



Proof of Theorem

Case 1: xm = yn
If the last characters of X and Y are the same, i.e., xm = yn, then:

We claim that the last character of Z (which is an LCS of X
and Y ) must be xm = yn, so zk = xm = yn.

If this were not true (i.e., if zk ̸= xm = yn), we could add xm
to Z , forming a common subsequence of X and Y with a
length of k + 1. This contradicts the assumption that Z is a
longest common subsequence.

Therefore, zk = xm = yn, and the remainder of Z (denoted Zk−1)
is an LCS of Xm−1 and Yn−1.

11 / 51



Proof of Theorem

Case 1: Example
Let:

X = ⟨A,B,C ,D,E ⟩
Y = ⟨C ,B,D,E ⟩

If the LCS is Z = ⟨C ,D,E ⟩, observe that:

The last characters of X and Y are both E (i.e.,
x5 = y4 = E ).

Since Z also ends with E , the remaining subsequence
Zk−1 = ⟨C ,D⟩ must be an LCS of the prefixes
X4 = ⟨A,B,C ,D⟩ and Y3 = ⟨C ,B,D⟩.

12 / 51



Proof of Theorem

Case 2: xm ̸= yn and zk ̸= xm
If xm ̸= yn and the last character of Z (i.e., zk) is not equal to xm,
then:

Z must be a longest common subsequence of Xm−1 and Y .

If this were not the case (i.e., if there were a common subsequence
W of Xm−1 and Y with a length greater than k), then W would
also be a common subsequence of X and Y , contradicting the
assumption that Z is an LCS of X and Y .

13 / 51



Proof of Theorem

Case 2: Example
Let:

X = ⟨A,B,C ,D,F ⟩
Y = ⟨B,C ,D,E ⟩

Suppose the LCS is Z = ⟨B,C ,D⟩.
The last characters of X and Y are F and E , so x5 ̸= y4.

Since Z does not contain x5 or y4, Z must be an LCS of
either:

Xm−1 = ⟨A,B,C ,D⟩ and Y = ⟨B,C ,D,E ⟩, or
X = ⟨A,B,C ,D,F ⟩ and Yn−1 = ⟨B,C ,D⟩.

Thus, Z = ⟨B,C ,D⟩ is an LCS of both cases.

14 / 51



Proof of Theorem

Case 3: xm ̸= yn and zk ̸= yn
If xm ̸= yn and zk ̸= yn, then:

Z must be a longest common subsequence of X and Yn−1.

If this were not the case (i.e., if there were a common subsequence
W of X and Yn−1 with a length greater than k), then W would
also be a common subsequence of X and Y , contradicting the
assumption that Z is an LCS of X and Y .

15 / 51



Proof of Theorem

Case 3: Example
Let:

X = ⟨A,B,C ,D⟩
Y = ⟨B,C ,E ,F ⟩

Suppose the LCS is Z = ⟨B,C ⟩.
The last characters of X and Y are D and F , so x4 ̸= y4.

Since Z does not contain x4 or y4, Z must be an LCS of
either:

Xn−1 = ⟨A,B,C ⟩ and Y = ⟨B,C ,E ,F ⟩, or
X = ⟨A,B,C ,D⟩ and Yn−1 = ⟨B,C ,E ⟩.

Thus, Z = ⟨B,C ⟩ is an LCS of both cases.

16 / 51



Significance of Theorem

The theorem characterizes the structure of LCS.

Shows that any LCS of two sequences contains within it an
LCS of prefixes of the sequences.

This recursive structure underpins the dynamic programming
approach to solving the LCS problem.

17 / 51



LCS Problem Setup and Notation

Problem: Given two sequences:

X = ⟨x1, x2, . . . , xm⟩
Y = ⟨y1, y2, . . . , yn⟩

Our goal is to find the longest common subsequence (LCS) of X
and Y .
Optimal Substructure: The theorem tells us that to solve the
LCS problem, we need to examine specific subproblems:

If the last characters of X and Y match (xm = yn), then they
must be part of the LCS.

If the last characters do not match (xm ̸= yn), we consider
two possibilities to find the longer subsequence.

18 / 51



LCS: Top-Down Approach with Memoization

Base Case:

The LCS problem requires us to consider the lengths of the
subsequences as we recurse.

If either X or Y has length 0 (i.e., m = 0 or n = 0), then no
common subsequence exists.

Therefore, the base case for the recursive function is:

LCS(Xm,Yn) = 0 if m = 0 or n = 0

This base case stops the recursion when we reach the end of
either sequence.

19 / 51



LCS: Top-Down Approach with Memoization

Recursive Case: Matching Last Characters

When the last characters of X and Y match (xm = yn):

The character xm = yn is part of the LCS.
We can reduce both sequences by one character to solve the
subproblem for the remaining prefixes Xm−1 and Yn−1.

Recursive function for this case:

LCS(Xm,Yn) = LCS(Xm−1,Yn−1) + 1 if xm = yn

This case follows from the optimal substructure property
(Theorem, Case 1).

20 / 51



LCS: Top-Down Approach with Memoization

Recursive Case: Non-Matching Last Characters
When the last characters of X and Y do not match
(xm ̸= yn):

We cannot include xm or yn in the LCS directly, but we need
to consider two possible subproblems to find the longest
subsequence.

The recursive cases:
1 Compute the LCS of Xm−1 and Y (ignoring the last character

of X ):
LCS(Xm−1,Yn)

2 Compute the LCS of X and Yn−1 (ignoring the last character
of Y ):

LCS(Xm,Yn−1)

Since we want the longest common subsequence, we take the
maximum of these two values:

LCS(Xm,Yn) = max(LCS(Xm−1,Yn), LCS(Xm,Yn−1)) if xm ̸= yn

21 / 51



LCS: Top-Down Approach with Memoization

Recursive Formula for LCS:

Combining both cases, we obtain the recursive formula:

This formula defines the length of an LCS of the prefixes Xm

and Yn of sequences X and Y .

22 / 51



LCS: Top-Down Approach with Memoization

Example:

Let X = ⟨a, b, c, d, g, h⟩ and Y = ⟨a, b, e, d, f, h, r⟩.
Start with the last characters:

x6 = h and y7 = r , which are not equal.

Apply the recursive cases:
1 Calculate LCS(Xm−1,Yn) = LCS(X [1 . . . 5],Y [1 . . . 7]).
2 Calculate LCS(Xm,Yn−1) = LCS(X [1 . . . 6],Y [1 . . . 6]).

Continue until reaching the base case.

The final answer is the length of the longest LCS found.

23 / 51



LCS: Top-Down Approach with Memoization

24 / 51



LCS: Bottom-Up Approach

Bottom-Up Table Construction:

Define a 2D table L[0 . . .m][0 . . . n] where L[i ][j ] represents
the length of the LCS of X [1 . . . i ] and Y [1 . . . j ].

Base cases:

L[0][j ] = 0 for all j (LCS with an empty string is 0).
L[i ][0] = 0 for all i .

Recurrence relation:

L[i ][j ] =

{
L[i − 1][j − 1] + 1 if xi = yj

max(L[i − 1][j ], L[i ][j − 1]) if xi ̸= yj

Final result: L[m][n] contains the length of the LCS of X and
Y .

25 / 51



LCS: Bottom-Up Approach

26 / 51



LCS: Bottom-Up Approach

Example:

X = ⟨A,B,C ,D⟩
Y = ⟨B,D,C ,A⟩

Fill the table L[i ][j ] step-by-step, using the recurrence relation.

Use base cases and recurrence to compute each entry.

The final result at L[m][n] will provide the length of the LCS.

27 / 51



LCS: Bottom-Up Approach–Filling the DP Table for LCS

Goal: Fill each cell dp[i ][j ] to find the longest common
subsequence (LCS) of X and Y .

Each cell dp[i ][j ] represents the LCS length of prefixes X [0 : i ]
and Y [0 : j ].

Check three neighboring cells:
Diagonal (Top-Left Neighbor): dp[i − 1][j − 1]

Use if X [i − 1] = Y [j − 1], indicating a match.
Set dp[i ][j ] = dp[i − 1][j − 1] + 1.

Left Neighbor: dp[i ][j − 1]

Use if X [i − 1] ̸= Y [j − 1]. Take the max to carry forward the
LCS length.

Top Neighbor: dp[i − 1][j ]

Use if X [i − 1] ̸= Y [j − 1]. Take the max to carry forward the
LCS length.

28 / 51



LCS: Bottom-Up Approach–Filling the DP Table for LCS

Goal: Fill each cell dp[i ][j ] to find the longest common
subsequence (LCS) of X and Y .

Mnemonic:
If characters match: Use Diagonal cell +1.
If characters don’t match: Take the max of Left and Top
neighbors.

Final value at dp[m][n] gives the length of the LCS of X and
Y .

Example Cell Filling

Match? Diagonal cell +1

No match? Max of Left and Top

29 / 51



LCS: Bottom-Up Approach

Initial Table:

Initialize the table L with all values set to 0.

Use the rule:

Match? Diagonal +1
No Match? Max of Top and Left

L[i ][j ] j = 0 j = 1 j = 2 j = 3 j = 4

i = 0 0 0 0 0 0
i = 1 0
i = 2 0
i = 3 0
i = 4 0

30 / 51



LCS: Bottom-Up Approach

Filling Row i = 1 (Comparing x1 = A)

L[i ][j ] j = 0 j = 1 j = 2 j = 3 j = 4

i = 0 0 0 0 0 0
i = 1 0 0 0 0 1
i = 2 0
i = 3 0
i = 4 0

j = 1: x1 = A and y1 = B ̸= A⇒ Max of Top and Left = 0.

j = 2: x1 = A and y2 = D ̸= A⇒ Max of Top and Left = 0.

j = 3: x1 = A and y3 = C ̸= A⇒ Max of Top and Left = 0.

j = 4: x1 = A and y4 = A⇒ Diagonal + 1 = 1.

31 / 51



LCS: Bottom-Up Approach

Filling Row i = 2 (Comparing x2 = B)

L[i ][j ] j = 0 j = 1 j = 2 j = 3 j = 4

i = 0 0 0 0 0 0
i = 1 0 0 0 0 1
i = 2 0 1 1 1 1
i = 3 0
i = 4 0

j = 1: x2 = B and y1 = B ⇒ Diagonal + 1 = 1.

j = 2: x2 = B and y2 = D ̸= B ⇒ Max of Top and Left = 1.

j = 3: x2 = B and y3 = C ̸= B ⇒ Max of Top and Left = 1.

j = 4: x2 = B and y4 = A ̸= B ⇒ Max of Top and Left = 1.

32 / 51



LCS: Bottom-Up Approach

Filling Row i = 3 (Comparing x3 = C)

L[i ][j ] j = 0 j = 1 j = 2 j = 3 j = 4

i = 0 0 0 0 0 0
i = 1 0 0 0 0 1
i = 2 0 1 1 1 1
i = 3 0 1 1 2 2
i = 4 0

j = 1: x3 = C and y1 = B ̸= C ⇒ Max of Top and Left = 1.

j = 2: x3 = C and y2 = D ̸= C ⇒ Max of Top and Left = 1.

j = 3: x3 = C and y3 = C ⇒ Diagonal + 1 = 2.

j = 4: x3 = C and y4 = A ̸= C ⇒ Max of Top and Left = 2.

33 / 51



LCS: Bottom-Up Approach

Filling Row i = 4 (Comparing x4 = D)

L[i ][j ] j = 0 j = 1 j = 2 j = 3 j = 4

i = 0 0 0 0 0 0
i = 1 0 0 0 0 1
i = 2 0 1 1 1 1
i = 3 0 1 1 2 2
i = 4 0 1 2 2 2

j = 1: x4 = D and y1 = B ̸= D ⇒ Max of Top and Left = 1.

j = 2: x4 = D and y2 = D ⇒ Diagonal + 1 = 2.

j = 3: x4 = D and y3 = C ̸= D ⇒ Max of Top and Left = 2.

j = 4: x4 = D and y4 = A ̸= D ⇒ Max of Top and Left = 2.

34 / 51



LCS: Summary

Key Points:

The LCS problem can be solved using both Top-Down and
Bottom-Up dynamic programming approaches.

Top-Down uses recursion and memoization, while Bottom-Up
fills the table iteratively.

Both approaches achieve O(m · n) time complexity.

The Bottom-Up approach is often preferred due to lower
recursion overhead.

35 / 51



Problem: Longest Common Substring (LCSstr)

Problem Definition:

Given two strings:

X = ⟨x1, x2, . . . , xm⟩
Y = ⟨y1, y2, . . . , yn⟩

Find the longest contiguous substring that appears in both X
and Y .

Example:

For X = “ABABC” and Y = “BABCA”, the longest common
substring is “BABC”, with length 4.

36 / 51



Recurrence Relation

Comparing Recurrence Relations for LCS and LCSstr
LCS Recurrence Relation:

If X [i ] = Y [j ]:

L[i ][j ] = L[i − 1][j − 1] + 1

If X [i ] ̸= Y [j ]:

L[i ][j ] = max(L[i − 1][j ], L[i ][j − 1])

This allows non-contiguous subsequences by taking the
maximum of subproblems without resetting the count.

LCSstr Recurrence Relation:
If X [i ] = Y [j ]:

L[i ][j ] = L[i − 1][j − 1] + 1

If X [i ] ̸= Y [j ]:
L[i ][j ] = 0

For LCSstr, contiguity is required, so any mismatch resets the
count to 0, unlike LCS.

37 / 51



Recurrence Relation

Using LCS to Derive LCSstr Recurrence

The LCS recurrence gives a framework to compare elements
X [i ] and Y [j ].

For LCSstr, we adapt this by resetting L[i ][j ] = 0 on
mismatches to enforce contiguity.

This modification creates a recurrence tailored for contiguous
substrings.

38 / 51



LCSstr: Base Case and Algorithm Outline

Base Case:

L[i ][0] = 0 and L[0][j ] = 0 for all i and j .

If either string has length 0, the longest common substring
length is 0.

Algorithm Outline (Bottom-Up):

Initialize a 2D table L with all values set to 0.

For each i from 1 to m:
For each j from 1 to n:

If X [i − 1] = Y [j − 1]: L[i ][j ] = L[i − 1][j − 1] + 1.
Update ‘maxLength‘ if L[i ][j ] exceeds the current ‘maxLength‘.
Otherwise, set L[i ][j ] = 0.

‘maxLength‘ stores the length of the longest common
substring.

39 / 51



Pseudo-Code for LCSstr (Bottom-Up Approach)

Algorithm 1 LCSstr - Bottom-Up Approach

Require: X : string of length m, Y : string of length n
Ensure: Length of the longest common substring
1: Initialize a table L[0 . . .m][0 . . . n] with all values set to 0
2: maxLength← 0
3: for i = 1 to m do
4: for j = 1 to n do
5: if X [i − 1] = Y [j − 1] then
6: L[i ][j ]← L[i − 1][j − 1] + 1
7: maxLength = max(maxLength, L[i ][j ])
8: else
9: L[i ][j ]← 0

10: end if
11: end for
12: end for
13: return maxLength

40 / 51



LCSstr: Example

Example: X = “ABABC” and Y = “BABCA”

L[i ][j ] j = 0 j = 1 j = 2 j = 3 j = 4 j = 5

i = 0 0 0 0 0 0 0
i = 1 0 0 1 0 0 1
i = 2 0 1 0 2 0 0
i = 3 0 0 2 0 0 0
i = 4 0 1 0 3 0 0
i = 5 0 0 0 0 4 0

Result: The longest common substring is “BABC” with length 4.

41 / 51



LCSstr: Complexity

Complexity:

Time Complexity: O(m× n), where m and n are the lengths
of X and Y .

Space Complexity: O(m × n).

42 / 51



Problem: Minimum Insertions and Deletions

Goal: Given two strings A and B, find the minimum number of
insertions and deletions required to transform A into B.
Example:

A = “heap”

B = “pea”

Solution:

Convert A to B with minimum operations.

Output: Number of deletions and insertions needed.

43 / 51



Key Idea: Using Longest Common Subsequence (LCS)

Observation:

The Longest Common Subsequence (LCS) of A and B
represents the longest sequence that can remain unchanged in
both strings.

Any character in A that is not part of the LCS must be
deleted.

Any character in B that is not part of the LCS must be
inserted.

44 / 51



Key Idea: Using Longest Common Subsequence (LCS)

Transforming A to B:

Let LCS length be the length of the LCS of A and B.

Then:

Deletions = A length - LCS length

Insertions = B length - LCS length

Example:

A = “heap”, B = “pea”

LCS length = 2 (Longest Common Subsequence: ”ea”)

Deletions = 4− 2 = 2

Insertions = 3− 2 = 1

Total Operations = 2 deletions + 1 insertion = 3

45 / 51



Algorithm Pseudo-Code

Algorithm 2 Minimum Insertions and Deletions to Convert A to B

Require: A, B: input strings
Ensure: Minimum number of insertions and deletions to convert A

to B
1: Compute the length of LCS, LCS length, using DP
2: Deletions = len(A)− LCS length
3: Insertions = len(B)− LCS length
4: return (Deletions, Insertions)

46 / 51



Problem: Longest Palindromic Subsequence (LPS)

Goal: Given a string X , find the length of the longest subsequence
of X that is a palindrome.
Example:

For X = “BBABCBCAB”, the longest palindromic
subsequence is ”BABCBAB” with length 7.

Using LCS to Solve LPS:

We can leverage the Longest Common Subsequence (LCS)
concept to find the LPS.

This approach simplifies LPS by transforming it into an LCS
problem.

47 / 51



Key Idea: Using LCS on the Reversed String

Steps:

Let X be the original string, and Xrev be its reverse.

Find the LCS of X and Xrev.

The LCS between X and Xrev will be the longest palindromic
subsequence.

Why This Works:

A palindrome reads the same forward and backward.

Thus, the longest sequence common to both X and its reverse
Xrev must be palindromic.

48 / 51



Algorithm for LPS Using LCS

49 / 51



Example: LPS Using LCS

Example: X = “BBABCBCAB”

Reverse X : Xrev = “BACBCBABB”

Compute LCS of X and Xrev.

The LCS length gives the length of the LPS, which is 7.

The longest palindromic subsequence is ”BABCBAB”.

50 / 51



LPS: Complexity

Time Complexity: O(m2), where m is the length of the string X .
Space Complexity: O(m2), due to the 2D DP table.

51 / 51


