CS 2500: Algorithms Lecture 25: Dynamic Programming: Longest Common Subsequence

Shubham Chatterjee

Missouri University of Science and Technology, Department of Computer Science

November 12, 2024

Introduction to Longest Common Subsequence (LCS)

- Biological applications often compare DNA sequences of different organisms.
- A DNA strand is a string of bases represented by the letters:
 A (adenine), C (cytosine), G (guanine), and T (thymine).
- We can express DNA strands as sequences over the set $\{A, C, G, T\}$.
- Example DNA sequences:
 - $S_1 = ACCGGTCGAGTGCGCGGAAGCCGGCCGAA$
 - $S_2 = \text{GTCGTTCGGAATGCCGTTGCTCTGTAAA}$
- Goal: Measure similarity between S_1 and S_2 .

イロン イボン イヨン イヨン 三日

- Different approaches to measuring similarity:
 - Substring similarity: Check if one sequence is a substring of the other.
 - Edit distance: Number of changes needed to transform one sequence into another.
 - Common subsequence similarity: Find the longest sequence of bases appearing in both sequences in the same order.
- We focus on finding the longest common subsequence (LCS) as a similarity measure.

• Consider sequences S_1 and S_2 :

- $S_1 = ACCGGTCGAGTGCGCGGAAGCCGGCCGAA$
- $S_2 = \text{GTCGTTCGGAATGCCGTTGCTCTGTAAA}$
- The longest common subsequence (LCS) is:

 $S_3 = GTCGTCGGAAGCCGGCCGAA$

• The LCS gives a measure of similarity between two DNA sequences by finding a maximal length sequence common to both.

- A subsequence of a sequence $X = \langle x_1, x_2, \dots, x_m \rangle$ is a sequence $Z = \langle z_1, z_2, \dots, z_k \rangle$ where:
 - There exists a strictly increasing sequence of indices i_1, i_2, \ldots, i_k such that $x_{i_i} = z_j$ for all $j = 1, 2, \ldots, k$.
- Example: $Z = \langle B, C, D, B \rangle$ is a subsequence of $X = \langle A, B, C, B, D, A, B \rangle$ with indices 2, 3, 5, 7.

- Given two sequences X and Y, a sequence Z is a common subsequence if Z is a subsequence of both X and Y.
- Example:
 - $X = \langle A, B, C, B, D, A, B \rangle$
 - $Y = \langle B, D, C, A, B, A \rangle$
 - One common subsequence is Z = (B, C, A), but it is not the longest common subsequence.

- In the LCS problem, given sequences X = ⟨x₁, x₂,..., x_m⟩ and Y = ⟨y₁, y₂,..., y_n⟩, the goal is to find the longest sequence that is a subsequence of both X and Y.
- Example LCS:
 - For $X = \langle A, B, C, B, D, A, B \rangle$ and $Y = \langle B, D, C, A, B, A \rangle$
 - The LCS is $\langle B, C, B, A \rangle$.

- The brute-force approach for solving the LCS problem:
 - Enumerate all subsequences of X.
 - For each subsequence of X, check if it is also a subsequence of Y.
 - Keep track of the longest common subsequence found.
- This approach requires exponential time, $O(2^m)$, as there are 2^m subsequences of X.
- Impractical for long sequences due to the high time complexity.

Optimal Substructure Property of LCS

- The LCS problem has an optimal-substructure property.
- Optimal substructure means an optimal solution to the problem contains within it optimal solutions to subproblems.
- For LCS, natural subproblems correspond to pairs of prefixes of the input sequences.
- Define the *i*-th prefix of $X = \langle x_1, x_2, \dots, x_m \rangle$ as:

$$X_i = \langle x_1, x_2, \ldots, x_i \rangle$$

• Example: If $X = \langle A, B, C, B, D, A, B \rangle$, then $X_4 = \langle A, B, C, B \rangle$.

Theorem: Optimal Substructure of an LCS

- Let $X = \langle x_1, x_2, \dots, x_m \rangle$ and $Y = \langle y_1, y_2, \dots, y_n \rangle$ be sequences.
- Let $Z = \langle z_1, z_2, \dots, z_k \rangle$ be any LCS of X and Y.
- Theorem:
 - If the last characters of X and Y are the same (i.e., $x_m = y_n$), then the last character of Z must also be x_m , and the rest of Z (denoted Z_{k-1}) is an LCS of X_{m-1} and Y_{n-1} , which are X and Y without their last characters.
 - If the last characters of X and Y are different (i.e., $x_m \neq y_n$) and $z_k \neq x_m$, then Z is an LCS of X_{m-1} and Y.
 - Similarly, if $x_m \neq y_n$ and $z_k \neq y_n$, then Z is an LCS of X and Y_{n-1} .

Case 1: $x_m = y_n$

If the last characters of X and Y are the same, i.e., $x_m = y_n$, then:

- We claim that the last character of Z (which is an LCS of X and Y) must be x_m = y_n, so z_k = x_m = y_n.
- If this were not true (i.e., if $z_k \neq x_m = y_n$), we could add x_m to Z, forming a common subsequence of X and Y with a length of k + 1. This contradicts the assumption that Z is a longest common subsequence.

Therefore, $z_k = x_m = y_n$, and the remainder of Z (denoted Z_{k-1}) is an LCS of X_{m-1} and Y_{n-1} .

Case 1: Example

Let:

- $X = \langle A, B, C, D, E \rangle$
- $Y = \langle C, B, D, E \rangle$

If the LCS is $Z = \langle C, D, E \rangle$, observe that:

- The last characters of X and Y are both E (i.e., $x_5 = y_4 = E$).
- Since Z also ends with E, the remaining subsequence $Z_{k-1} = \langle C, D \rangle$ must be an LCS of the prefixes $X_4 = \langle A, B, C, D \rangle$ and $Y_3 = \langle C, B, D \rangle$.

Case 2: $x_m \neq y_n$ and $z_k \neq x_m$

If $x_m \neq y_n$ and the last character of Z (i.e., z_k) is not equal to x_m , then:

• Z must be a longest common subsequence of X_{m-1} and Y. If this were not the case (i.e., if there were a common subsequence W of X_{m-1} and Y with a length greater than k), then W would also be a common subsequence of X and Y, contradicting the assumption that Z is an LCS of X and Y.

Case 2: Example

Let:

• $X = \langle A, B, C, D, F \rangle$

•
$$Y = \langle B, C, D, E \rangle$$

Suppose the LCS is $Z = \langle B, C, D \rangle$.

- The last characters of X and Y are F and E, so $x_5 \neq y_4$.
- Since Z does not contain x₅ or y₄, Z must be an LCS of either:
 - $X_{m-1} = \langle A, B, C, D \rangle$ and $Y = \langle B, C, D, E \rangle$, or • $X = \langle A, B, C, D, F \rangle$ and $Y_{n-1} = \langle B, C, D \rangle$.

• Thus, $Z = \langle B, C, D \rangle$ is an LCS of both cases.

Case 3: $x_m \neq y_n$ and $z_k \neq y_n$ If $x_m \neq y_n$ and $z_k \neq y_n$, then:

• Z must be a longest common subsequence of X and Y_{n-1} . If this were not the case (i.e., if there were a common subsequence W of X and Y_{n-1} with a length greater than k), then W would also be a common subsequence of X and Y, contradicting the assumption that Z is an LCS of X and Y.

Case 3: Example Let:

• $X = \langle A, B, C, D \rangle$

•
$$Y = \langle B, C, E, F \rangle$$

Suppose the LCS is $Z = \langle B, C \rangle$.

- The last characters of X and Y are D and F, so $x_4 \neq y_4$.
- Since Z does not contain x₄ or y₄, Z must be an LCS of either:

•
$$X_{n-1} = \langle A, B, C \rangle$$
 and $Y = \langle B, C, E, F \rangle$, or
• $X = \langle A, B, C, D \rangle$ and $Y_{n-1} = \langle B, C, E \rangle$.

• Thus, $Z = \langle B, C \rangle$ is an LCS of both cases.

- The theorem characterizes the structure of LCS.
- Shows that any LCS of two sequences contains within it an LCS of prefixes of the sequences.
- This recursive structure underpins the dynamic programming approach to solving the LCS problem.

Problem: Given two sequences:

•
$$X = \langle x_1, x_2, \ldots, x_m \rangle$$

•
$$Y = \langle y_1, y_2, \ldots, y_n \rangle$$

Our goal is to find the longest common subsequence (LCS) of X and Y.

Optimal Substructure: The theorem tells us that to solve the LCS problem, we need to examine specific subproblems:

- If the last characters of X and Y match $(x_m = y_n)$, then they must be part of the LCS.
- If the last characters do not match (x_m ≠ y_n), we consider two possibilities to find the longer subsequence.

Base Case:

- The LCS problem requires us to consider the lengths of the subsequences as we recurse.
- If either X or Y has length 0 (i.e., m = 0 or n = 0), then no common subsequence exists.
- Therefore, the base case for the recursive function is:

$$LCS(X_m, Y_n) = 0$$
 if $m = 0$ or $n = 0$

• This base case stops the recursion when we reach the end of either sequence.

(ロ) (同) (三) (三) (三) (000)

Recursive Case: Matching Last Characters

- When the last characters of X and Y match $(x_m = y_n)$:
 - The character $x_m = y_n$ is part of the LCS.
 - We can reduce both sequences by one character to solve the subproblem for the remaining prefixes X_{m-1} and Y_{n-1} .
- Recursive function for this case:

$$LCS(X_m, Y_n) = LCS(X_{m-1}, Y_{n-1}) + 1 \quad \text{if } x_m = y_n$$

• This case follows from the optimal substructure property (Theorem, Case 1).

LCS: Top-Down Approach with Memoization

Recursive Case: Non-Matching Last Characters

- When the last characters of X and Y do not match $(x_m \neq y_n)$:
 - We cannot include x_m or y_n in the LCS directly, but we need to consider two possible subproblems to find the longest subsequence.
- The recursive cases:
 - Compute the LCS of X_{m-1} and Y (ignoring the last character of X):

$$LCS(X_{m-1}, Y_n)$$

Compute the LCS of X and Y_{n-1} (ignoring the last character of Y):

$$LCS(X_m, Y_{n-1})$$

 Since we want the longest common subsequence, we take the maximum of these two values:

$$LCS(X_m, Y_n) = \max(LCS(X_{m-1}, Y_n), LCS(X_m, Y_{n-1})) \quad \text{if } x_m \neq y_n$$

Recursive Formula for LCS:

• Combining both cases, we obtain the recursive formula:

$$\operatorname{LCS}(X_m, Y_n) = \begin{cases} 0 & \text{if } m = 0 \text{ or } n = 0\\ \operatorname{LCS}(X_{m-1}, Y_{n-1}) + 1 & \text{if } m > 0, n > 0, \text{ and } x_m = y_n\\ \max(\operatorname{LCS}(X_{m-1}, Y_n), \operatorname{LCS}(X_m, Y_{n-1})) & \text{if } m > 0, n > 0, \text{ and } x_m \neq y_n \end{cases}$$

• This formula defines the length of an LCS of the prefixes X_m and Y_n of sequences X and Y.

Example:

- Let $X = \langle a, b, c, d, g, h \rangle$ and $Y = \langle a, b, e, d, f, h, r \rangle$.
- Start with the last characters:

• $x_6 = h$ and $y_7 = r$, which are not equal.

- Apply the recursive cases:
 - Calculate $LCS(X_{m-1}, Y_n) = LCS(X[1...5], Y[1...7]).$
 - **2** Calculate $LCS(X_m, Y_{n-1}) = LCS(X[1...6], Y[1...6]).$
- Continue until reaching the base case.
- The final answer is the length of the longest LCS found.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

LCS: Top-Down Approach with Memoization

```
Algorithm 1 LCS - Top-Down with Memoization
Require: X: string of length m, Y: string of length n
Ensure: Length of LCS of X and Y
 1: Initialize a memoization table L[0 \dots m][0 \dots n] with all values set to -1
 2: function LCS(i, j)
       if i = 0 or j = 0 then
 3:
           return 0
 4:
       end if
 5:
       if L[i][j] \neq -1 then
 6:
           return L[i][j]
 7:
 8:
       end if
       if x_i = y_i then
 9:
           L[i][j] \leftarrow \mathrm{LCS}(i-1, j-1) + 1
10:
       else
11:
           L[i][j] \leftarrow \max(\mathrm{LCS}(i-1,j),\mathrm{LCS}(i,j-1))
12:
       end if
13:
14:
       return L[i][j]
15: end function
16: Compute the solution: Call LCS(m, n)
```

Bottom-Up Table Construction:

- Define a 2D table $L[0 \dots m][0 \dots n]$ where L[i][j] represents the length of the LCS of $X[1 \dots i]$ and $Y[1 \dots j]$.
- Base cases:
 - L[0][j] = 0 for all j (LCS with an empty string is 0).
 - L[i][0] = 0 for all i.
- Recurrence relation:

$$L[i][j] = \begin{cases} L[i-1][j-1] + 1 & \text{if } x_i = y_j \\ \max(L[i-1][j], L[i][j-1]) & \text{if } x_i \neq y_j \end{cases}$$

• Final result: L[m][n] contains the length of the LCS of X and Y.

Algorithm 2 LCS - Bottom-Up Approach **Require:** X: string of length m, Y: string of length n**Ensure:** Length of LCS of X and Y1: Initialize a table $L[0 \dots m][0 \dots n]$ with all values set to 0 2: for i = 1 to m do for j = 1 to n do 3: if $x_i = y_i$ then 4. $L[i][j] \leftarrow L[i-1][j-1] + 1$ 5: 6: else $L[i][j] \leftarrow \max(L[i-1][j], L[i][j-1])$ 7: 8. end if end for 9: 10: end for 11: return L[m][n] \triangleright Length of the LCS of X and Y

Example:

- $X = \langle A, B, C, D \rangle$
- $Y = \langle B, D, C, A \rangle$
- Fill the table L[i][j] step-by-step, using the recurrence relation.
- Use base cases and recurrence to compute each entry.
- The final result at L[m][n] will provide the length of the LCS.

Goal: Fill each cell dp[i][j] to find the longest common subsequence (LCS) of X and Y.

- Each cell dp[i][j] represents the LCS length of prefixes X[0:i] and Y[0:j].
- Check three neighboring cells:
 - Diagonal (Top-Left Neighbor): dp[i-1][j-1]
 - Use if X[i-1] = Y[j-1], indicating a match.
 - Set dp[i][j] = dp[i-1][j-1] + 1.
 - Left Neighbor: dp[i][j-1]
 - Use if $X[i-1] \neq Y[j-1]$. Take the max to carry forward the LCS length.
 - Top Neighbor: dp[i-1][j]
 - Use if $X[i-1] \neq Y[j-1]$. Take the max to carry forward the LCS length.

Goal: Fill each cell dp[i][j] to find the longest common subsequence (LCS) of X and Y.

- Mnemonic:
 - If characters match: Use Diagonal cell +1.
 - If characters don't match: Take the max of Left and Top neighbors.
- Final value at dp[m][n] gives the length of the LCS of X and Y.

Example Cell Filling

- Match? Diagonal cell +1
- No match? Max of Left and Top

Initial Table:

- Initialize the table *L* with all values set to 0.
- Use the rule:
 - Match? Diagonal +1
 - No Match? Max of Top and Left

L[i][j]	<i>j</i> = 0	j = 1	<i>j</i> = 2	<i>j</i> = 3	<i>j</i> = 4
<i>i</i> = 0	0	0	0	0	0
i = 1	0				
<i>i</i> = 2	0				
<i>i</i> = 3	0				
<i>i</i> = 4	0				

Filling Row i = 1 (Comparing $x_1 = A$)

j = 1: x₁ = A and y₁ = B ≠ A ⇒ Max of Top and Left = 0.
j = 2: x₁ = A and y₂ = D ≠ A ⇒ Max of Top and Left = 0.
j = 3: x₁ = A and y₃ = C ≠ A ⇒ Max of Top and Left = 0.
j = 4: x₁ = A and y₄ = A ⇒ Diagonal + 1 = 1.

Filling Row i = 2 (Comparing $x_2 = B$)

j = 1: x₂ = B and y₁ = B ⇒ Diagonal + 1 = 1.
j = 2: x₂ = B and y₂ = D ≠ B ⇒ Max of Top and Left = 1.
j = 3: x₂ = B and y₃ = C ≠ B ⇒ Max of Top and Left = 1.
j = 4: x₂ = B and y₄ = A ≠ B ⇒ Max of Top and Left = 1.

Filling Row i = 3 (Comparing $x_3 = C$)

L[i][j]	j = 0	j = 1	<i>j</i> = 2	<i>j</i> = 3	<i>j</i> = 4
<i>i</i> = 0	0	0	0	0	0
i = 1	0	0	0	0	1
<i>i</i> = 2	0	1	1	1	1
<i>i</i> = 3	0	1	1	2	2
<i>i</i> = 4	0				

j = 1: x₃ = C and y₁ = B ≠ C ⇒ Max of Top and Left = 1.
j = 2: x₃ = C and y₂ = D ≠ C ⇒ Max of Top and Left = 1.
j = 3: x₃ = C and y₃ = C ⇒ Diagonal + 1 = 2.
j = 4: x₃ = C and y₄ = A ≠ C ⇒ Max of Top and Left = 2.

Filling Row i = 4 (Comparing $x_4 = D$)

L[i][j]	j = 0	j = 1	<i>j</i> = 2	<i>j</i> = 3	<i>j</i> = 4
<i>i</i> = 0	0	0	0	0	0
i = 1	0	0	0	0	1
<i>i</i> = 2	0	1	1	1	1
<i>i</i> = 3	0	1	1	2	2
<i>i</i> = 4	0	1	2	2	2

j = 1: x₄ = D and y₁ = B ≠ D ⇒ Max of Top and Left = 1.
j = 2: x₄ = D and y₂ = D ⇒ Diagonal + 1 = 2.
j = 3: x₄ = D and y₃ = C ≠ D ⇒ Max of Top and Left = 2.
j = 4: x₄ = D and y₄ = A ≠ D ⇒ Max of Top and Left = 2.

Key Points:

- The LCS problem can be solved using both Top-Down and Bottom-Up dynamic programming approaches.
- Top-Down uses recursion and memoization, while Bottom-Up fills the table iteratively.
- Both approaches achieve $O(m \cdot n)$ time complexity.
- The Bottom-Up approach is often preferred due to lower recursion overhead.

Problem Definition:

- Given two strings:
 - $X = \langle x_1, x_2, \dots, x_m \rangle$
 - $Y = \langle y_1, y_2, \ldots, y_n \rangle$
- Find the longest contiguous substring that appears in both X and Y.

Example:

• For *X* = "ABABC" and *Y* = "BABCA", the longest common substring is **"BABC"**, with length 4.

Recurrence Relation

Comparing Recurrence Relations for LCS and LCSstr • LCS Recurrence Relation:

• If X[i] = Y[j]:

$$L[i][j] = L[i-1][j-1] + 1$$

• If $X[i] \neq Y[j]$:

 $L[i][j] = \max(L[i-1][j], L[i][j-1])$

- This allows non-contiguous subsequences by taking the maximum of subproblems without resetting the count.
- LCSstr Recurrence Relation:

$$L[i][j] = L[i-1][j-1] + 1$$

• If $X[i] \neq Y[j]$:

$$L[i][j] = 0$$

 For LCSstr, contiguity is required, so any mismatch resets the count to 0, unlike LCS.

Using LCS to Derive LCSstr Recurrence

- The LCS recurrence gives a framework to compare elements X[i] and Y[j].
- For LCSstr, we adapt this by resetting L[i][j] = 0 on mismatches to enforce contiguity.
- This modification creates a recurrence tailored for contiguous substrings.

Base Case:

- L[i][0] = 0 and L[0][j] = 0 for all *i* and *j*.
- If either string has length 0, the longest common substring length is 0.

Algorithm Outline (Bottom-Up):

- Initialize a 2D table L with all values set to 0.
- For each *i* from 1 to *m*:
 - For each *j* from 1 to *n*:
 - If X[i-1] = Y[j-1]: L[i][j] = L[i-1][j-1] + 1.
 - Update 'maxLength' if L[i][j] exceeds the current 'maxLength'.
 - Otherwise, set L[i][j] = 0.
- 'maxLength' stores the length of the longest common substring.

Pseudo-Code for LCSstr (Bottom-Up Approach)

Algorithm 1 LCSstr - Bottom-Up Approach **Require:** X: string of length m, Y: string of length nEnsure: Length of the longest common substring 1: Initialize a table $L[0 \dots m][0 \dots n]$ with all values set to 0 2: maxLength $\leftarrow 0$ 3: for i = 1 to m do 4: for i = 1 to n do if X[i-1] = Y[i-1] then 5: $L[i][i] \leftarrow L[i-1][i-1] + 1$ 6: maxLength = max(maxLength, L[i][i])7: else 8. 9: $L[i][j] \leftarrow 0$ end if 10: end for 11: 12: end for 13: return maxLength ヘロト 人間 ト ヘヨト ヘヨト **Example:** X = "ABABC" and Y = "BABCA"

L[i][j]	j = 0	j = 1	<i>j</i> = 2	<i>j</i> = 3	<i>j</i> = 4	<i>j</i> = 5
<i>i</i> = 0	0	0	0	0	0	0
i = 1	0	0	1	0	0	1
<i>i</i> = 2	0	1	0	2	0	0
<i>i</i> = 3	0	0	2	0	0	0
<i>i</i> = 4	0	1	0	3	0	0
<i>i</i> = 5	0	0	0	0	4	0

Result: The longest common substring is "BABC" with length 4.

Complexity:

- Time Complexity: $O(m \times n)$, where m and n are the lengths of X and Y.
- Space Complexity: $O(m \times n)$.

Goal: Given two strings A and B, find the minimum number of insertions and deletions required to transform A into B. **Example:**

- *A* = "heap"
- *B* = "pea"

Solution:

- Convert A to B with minimum operations.
- Output: Number of deletions and insertions needed.

Observation:

- The Longest Common Subsequence (LCS) of A and B represents the longest sequence that can remain unchanged in both strings.
- Any character in A that is not part of the LCS must be deleted.
- Any character in *B* that is not part of the LCS must be inserted.

Key Idea: Using Longest Common Subsequence (LCS)

Transforming A to B:

- Let LCS_length be the length of the LCS of A and B.
- Then:
 - **Deletions** = A_length LCS_length
 - Insertions = $B_length LCS_length$

Example:

- *A* = "heap", *B* = "pea"
- LCS_length = 2 (Longest Common Subsequence: "ea")
- **Deletions** = 4 2 = 2
- **Insertions** = 3 − 2 = 1
- Total Operations = 2 deletions + 1 insertion = 3

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Algorithm 2 Minimum Insertions and Deletions to Convert A to B

Require: A, B: input strings

Ensure: Minimum number of insertions and deletions to convert *A* to *B*

- 1: Compute the length of LCS, LCS_length, using DP
- 2: **Deletions** = $len(A) LCS_length$
- 3: Insertions = $len(B) LCS_length$
- 4: return (Deletions, Insertions)

Goal: Given a string X, find the length of the longest subsequence of X that is a palindrome.

Example:

• For *X* = "BBABCBCAB", the longest palindromic subsequence is "BABCBAB" with length 7.

Using LCS to Solve LPS:

- We can leverage the Longest Common Subsequence (LCS) concept to find the LPS.
- This approach simplifies LPS by transforming it into an LCS problem.

Steps:

- Let X be the original string, and X_{rev} be its reverse.
- Find the LCS of X and X_{rev} .
- The LCS between X and X_{rev} will be the longest palindromic subsequence.

Why This Works:

- A palindrome reads the same forward and backward.
- Thus, the longest sequence common to both X and its reverse $X_{\rm rev}$ must be palindromic.

Algorithm 1 Longest Palindromic Subsequence via LCS **Require:** X: input string of length m**Ensure:** Length of the longest palindromic subsequence in X1: Let X_{rev} be the reverse of X 2: Initialize a 2D array $L[0 \dots m][0 \dots m]$ for LCS computation 3: for i = 0 to m do for i = 0 to m do 4: if i == 0 or j == 0 then 5: $L[i][j] \leftarrow 0$ \triangleright Base case: empty strings 6: else if $X[i-1] == X_{rev}[j-1]$ then 7: $L[i][j] \leftarrow L[i-1][j-1] + 1$ 8. else 9: $L[i][j] \leftarrow \max(L[i-1][j], L[i][j-1])$ 10: end if 11: 12: end for 13: end for 14: return L[m][m]▷ Length of the longest palindromic subsequence

> < □ > < □ > < □ > < Ξ > < Ξ > < Ξ > Ξ のQ () 49/51

Example: X = "BBABCBCAB"

- Reverse X: X_{rev} = "BACBCBABB"
- Compute LCS of X and X_{rev}.
- The LCS length gives the length of the LPS, which is 7.
- The longest palindromic subsequence is "BABCBAB".

Time Complexity: $O(m^2)$, where *m* is the length of the string *X*. **Space Complexity:** $O(m^2)$, due to the 2D DP table.