
CS 2500: Algorithms
Lecture 24: Dynamic Programming: 0/1 Knapsack Problem

Shubham Chatterjee

Missouri University of Science and Technology, Department of Computer Science

November 7, 2024

1 / 63



0/1 Knapsack Problem

We are given a number of objects and a knapsack.

We suppose that the objects may not be broken into
smaller pieces, so we may either take an object or leave it
behind.

Let i = 1, 2, . . . , n denote the objects.

Each object i has:

a positive weight wi

a positive value vi

The knapsack has a weight capacity W .

Goal: Fill the knapsack in a way that maximizes the total
value of the included objects.

Let xi = 0 if we do not take object i , and xi = 1 if we include
object i .

2 / 63



0/1 Knapsack Problem

Mathematical Formulation

maximize
n∑

i=1

xivi

subject to
n∑

i=1

xiwi ≤ W

where:

vi > 0 and wi > 0

xi ∈ {0, 1} for 1 ≤ i ≤ n

Constraints:

vi and wi are constants on the instance

xi are variables in the solution.

Objective: Maximize the total value without exceeding the weight
capacity W .

3 / 63



0/1 Knapsack Problem

Greedy Algorithm

The greedy algorithm suggests choosing objects in order of
decreasing vi

wi
(value per unit weight).

However, the greedy approach fails when objects cannot be
broken.

Example:
Suppose we have three objects:

Object 1: weight = 6, value = 8
Object 2: weight = 5, value = 5
Object 3: weight = 5, value = 5

Knapsack capacity = 10.
Greedy algorithm would pick object 1 (highest v

w ), but this
leaves no room for other objects.
Optimal solution: pick objects 2 and 3, with total value of 10.

4 / 63



Dynamic Programming: Two Main Approaches

Dynamic programming can be implemented using two main
approaches:

1 Top-Down with Memoization
2 Bottom-Up

Both approaches use a table to store intermediate results, but
differ in how the table is filled and the order in which
subproblems are solved.

Note: The technical term “memoization” is not a misspelling
of “memorization”. The word “memoization” comes from
“memo” since the technique consists of recording a value to
be looked up later.

5 / 63



Order of Filling the Table

Top-Down with Memoization:

Starts from the “top” (i.e., the original problem) and breaks it
down into smaller subproblems recursively.

For each subproblem, checks if the solution already exists in
the table.

If the solution is not in the table, solves the subproblem and
stores the result in the table.

Recursive calls continue until reaching the base cases, and
results are stored (“memoized”) as they are computed.

Bottom-Up:

Begins from the “bottom” by solving the smallest
subproblems first and storing their results in the table.

Uses these stored results to solve larger subproblems
iteratively, building up to the solution for the original problem.

Systematically fills all entries in the table from smallest to
largest subproblems.

6 / 63



Implementation Style

Top-Down with Memoization:

Uses recursion with memoization.

Each recursive call may lead to further recursive calls. Once a
subproblem is solved, its result is stored to avoid redundant
computation.

Has a natural recursive structure, making the logic easier to
understand for problems that are inherently recursive.

Bottom-Up:

Uses an iterative approach with loops to fill the table from the
smallest subproblems up to the largest.

Implemented with explicit loops rather than recursive calls,
reducing the overhead associated with recursion.

Builds the solution in a structured, iterative manner, which
can be more efficient in practice.

7 / 63



Computation Path

Top-Down with Memoization:

Only the necessary subproblems are computed, depending on
the recursion path taken to solve the main problem.

In some cases, not all entries in the table are filled, as only the
subproblems needed to reach the solution are computed.

Bottom-Up:

Computes all possible subproblems in a systematic order.

Every entry in the table is usually filled, even if not all of them
are necessary to compute the final result.

This approach ensures all dependencies are solved in advance,
as the solution builds from the smallest subproblems.

8 / 63



Efficiency and Overhead

Top-Down with Memoization:

Can have more overhead due to recursive calls, especially if
the problem has deep recursion.

May save some work by only computing the necessary
subproblems, which can be efficient in some cases.

Bottom-Up:

Typically has less overhead, as it avoids recursion and fills the
table directly with iterative loops.

This approach can lead to better performance in practice,
especially in languages where recursion is costly.

More suitable for problems where all subproblems need to be
computed systematically.

9 / 63



Top-Down vs Bottom-Up: Summary

Top-Down with Memoization:

Starts with the original problem and breaks it down recursively.

Uses memoization to store results of subproblems.

Only solves necessary subproblems based on recursion path.

Bottom-Up:

Starts with the smallest subproblems and builds up iteratively.

Systematically fills all table entries, ensuring all dependencies
are solved.

Avoids recursion overhead, typically faster in practice.

10 / 63



0/1 Knapsack: Top-Down Approach with Memoization

Steps for Top-Down Approach:
1 Start with the original problem (e.g., max value with all items

and full weight capacity).
2 Recursively break down the problem:

If item i is not included, recursively compute the solution for
i − 1 items with the same capacity.
If item i is included, recursively compute the solution for i − 1
items with reduced capacity W − wi .

3 Store results in a table (memoization) as each subproblem is
solved.

4 Retrieve results from the table when the same subproblem is
encountered again, avoiding redundant computation.

Note: This recursive approach does not require solving every
subproblem in the table; only the subproblems reached by the
recursion path are solved.

11 / 63



0/1 Knapsack: Top-Down Approach with Memoization

Let Knapsack(i ,w) represent the max value for items 1 to i with
weight w :

Recursive formula:

Results are stored in a table as subproblems are computed,
avoiding redundant recursion.

12 / 63



0/1 Knapsack: Top-Down Approach with Memoization

13 / 63



0/1 Knapsack: Bottom-Up Approach

Steps for Bottom-Up Approach:

1 Initialize a table (e.g., 2D array) where each entry represents a
subproblem (e.g., max value achievable with a certain number
of items and a certain weight capacity).

2 Fill the table iteratively, row by row or column by column,
starting from the smallest subproblems (e.g., 0 items or 0
weight).

3 Use the already computed subproblem results to solve larger
subproblems in each step.

4 The final entry in the table gives the answer to the original
problem.

Note: This approach systematically fills all entries in the
table, even if not all are necessary to compute the final result.

14 / 63



0/1 Knapsack: Bottom-Up Approach

Define a table V [i ][w ] where:

i : The number of items considered (from 1 to n).
w : The weight limit (from 0 to W ).
V [i ][w ]: The maximum value achievable with items 1, . . . , i
and weight capacity w .

Recurrence relation:

V [i ][w ] =

{
V [i − 1][w ] if wi > w

max(V [i − 1][w ],V [i − 1][w − wi ] + vi ) if wi ≤ w

Boundary conditions:

V [0][w ] = 0 for all w (no items to include).
V [i ][0] = 0 for all i (zero weight capacity).

15 / 63



0/1 Knapsack: Bottom-Up Approach

16 / 63



0/1 Knapsack: Bottom-Up Approach

Example:

Objects: weights = 1, 2, 5, 6, 7; values = 1, 6, 18, 22, 28.

Knapsack capacity = 11.

Dynamic programming table shows maximum values at
different weight capacities.

Figure: The 0/1 Knapsack Problem using Dynamic Programming.

17 / 63



0/1 Knapsack: Bottom-Up Approach

Row 1: w1 = 1, v1 = 1

For weight w = 0: V [1][0] = 0 (knapsack has zero capacity).

For weight w ≥ 1: Item 1 fits, so V [1][w ] = 1.

Row 1: 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

18 / 63



0/1 Knapsack: Bottom-Up Approach

Row 2: w2 = 2, v2 = 6

For w = 0: V [2][0] = 0.

For w = 1: V [2][1] = 1 (only item 1 fits).

For w = 2: Use item 2 alone, V [2][2] = 6.

For w = 3: Combine item 1 and item 2, V [2][3] = 7.

For w ≥ 4: Value remains 7.

Row 2: 0, 1, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7

19 / 63



0/1 Knapsack: Bottom-Up Approach

Row 3: w3 = 5, v3 = 18

For w ≤ 4: Item 3 cannot fit, V [3][w ] = V [2][w ].

For w = 5: Use item 3 alone, V [3][5] = 18.

For w = 6: Use item 3 and item 1, V [3][6] = 19.

For w = 7: Use item 3 and item 2, V [3][7] = 24.

For w ≥ 8: Maximum value is 25.

Row 3: 0, 1, 6, 7, 7, 18, 19, 24, 25, 25, 25, 25

20 / 63



0/1 Knapsack: Bottom-Up Approach

Row 4: w4 = 6, v4 = 22

For w ≤ 5: Item 4 cannot fit, V [4][w ] = V [3][w ].

For w = 6: Use item 4 alone, V [4][6] = 22.

For w = 7: Use item 4 and item 1, V [4][7] = 23.

For w = 8: Use item 4 and item 2, V [4][8] = 28.

For w = 9: Maximum value is 29.

For w = 11: Use items 4 and 3, giving V [4][11] = 40.

Row 4: 0, 1, 6, 7, 7, 18, 22, 23, 28, 29, 29, 40

21 / 63



0/1 Knapsack: Bottom-Up Approach

Row 5: w5 = 7, v5 = 28

For w ≤ 6: Item 5 cannot fit, V [5][w ] = V [4][w ].

For w = 7: Use item 5 alone, V [5][7] = 28.

For w = 8: Use item 5 and item 1, V [5][8] = 29.

For w = 9: Use item 5 and item 2, V [5][9] = 34.

For w = 10: Maximum value is 35.

For w = 11: Use items 5 and 3 or items 5 and 4,
V [5][11] = 40.

Row 5: 0, 1, 6, 7, 7, 18, 22, 28, 29, 34, 35, 40

22 / 63



0/1 Knapsack: Bottom-Up Approach

Optimal Solution Traceback

Using the table, trace back to find the composition of the
optimal load.

Example:

Start from V [5, 11], check previous cells to identify items
included in the optimal solution.
Optimal solution consists of objects 3 and 4.
Total value = 40.

23 / 63



0/1 Knapsack: Bottom-Up Approach

Algorithm Complexity

Time Complexity: O(nW )

n: Number of items.
W : Knapsack capacity.

Space Complexity: O(nW ) for storing the table V .

Efficient for cases where both n and W are not too large.

24 / 63



Subset Sum Problem

Goal: Determine if there exists a subset of a given set of
integers that sums up to a target value S .

This problem can be solved efficiently using DP.

It shares similarities with the 0/1 Knapsack Problem.

25 / 63



Subset Sum Problem

Dynamic Programming Approach: To solve the Subset Sum
Problem using DP, we define a DP table where:

DP[i ][j ]: Boolean value indicating whether a subset of the
first i elements can sum up to j .

DP[i ][j ] = True if there exists a subset that sums up to j .

DP[i ][j ] = False otherwise.

26 / 63



Subset Sum Problem

Similarity to the 0/1 Knapsack Problem

Decision Problem vs. Optimization Problem:

Subset Sum is a decision problem (we only care if a solution
exists).
0/1 Knapsack is an optimization problem (we want the
maximum value).

Structure of Choices:
In both problems, for each element, we can either include or
exclude it.

27 / 63



Subset Sum Problem

Recurrence Relation Comparison

Subset Sum:

DP[i ][j ] = DP[i − 1][j ] OR DP[i − 1][j − ai−1]

0/1 Knapsack:

DP[i ][j ] = max(DP[i − 1][j ],DP[i − 1][j − wi ] + vi )

In Subset Sum, we use boolean OR; in 0/1 Knapsack, we use
max.

28 / 63



Subset Sum Problem

DP Table Initialization

1 Base Case: DP[0][0] = True. With zero elements, we can
achieve a sum of 0 by taking an empty subset.

2 First Row: For j > 0, DP[0][j ] = False: With zero elements,
no non-zero sum is achievable.

29 / 63



Subset Sum Problem

Filling the DP Table: For each element i (where 1 ≤ i ≤ n) and
each possible sum j (where 0 ≤ j ≤ S):

If ai−1 is greater than j : Exclude it, so

DP[i ][j ] = DP[i − 1][j ]

If ai−1 ≤ j : We have two choices:

DP[i ][j ] = DP[i − 1][j ] OR DP[i − 1][j − ai−1]

30 / 63



Subset Sum Problem

Explanation of the Choices

DP[i − 1][j ]: The subset sum j can be achieved without
including ai−1.

DP[i − 1][j − ai−1]: The subset sum j can be achieved by
including ai−1, provided that a subset summing to j − ai−1

exists among the first i − 1 elements.

31 / 63



Subset Sum Problem

Result of the DP Table: The solution to the problem will be
found in the cell DP[n][S ]:

If DP[n][S ] = True, there exists a subset of the array that
sums to S .

If DP[n][S ] = False, no such subset exists.

32 / 63



Subset Sum Problem

Example:

Array: {3, 34, 4, 12, 5, 2}
Target Sum: 9

We fill the DP table using the rules discussed and check DP[6][9]
to see if a subset with sum 9 exists.

33 / 63



Subset Sum Problem

Given Array: {3, 34, 4, 12, 5, 2}
Target Sum: 9

Figure: DP Table for Array {3, 34, 4, 12, 5, 2} and Target Sum 9

34 / 63



Subset Sum Problem

Row 0: 0 Elements

With 0 elements, the only achievable sum is 0.

Therefore, DP[0][0] = True, and all other entries are False.

Row 0: T, F, F, F, F, F, F, F, F, F

35 / 63



Subset Sum Problem

Row 1: First Element = 3

For j = 3: We can achieve a sum of 3 by taking only the
element 3, so DP[1][3] = True.

For other values of j > 3: No subset exists that sums to those
values with just the element 3.

Row 1: T, F, F, T, F, F, F, F, F, F

36 / 63



Subset Sum Problem

Row 2: Elements = {3, 34}
Adding 34 doesn’t help us achieve any new sums below 34.

Therefore, this row remains the same as Row 1.

Row 2: T, F, F, T, F, F, F, F, F, F

37 / 63



Subset Sum Problem

Row 3: Elements = {3, 34, 4}
For j = 4: We can achieve a sum of 4 by using only the
element 4, so DP[3][4] = True.

For j = 7: We can achieve a sum of 7 by combining elements
3 and 4, so DP[3][7] = True.

Row 3: T, F, F, T, T, F, F, T, F, F

38 / 63



Subset Sum Problem

Row 4: Elements = {3, 34, 4, 12}
Adding 12 doesn’t allow us to achieve any new sums below 12.

Therefore, this row remains the same as Row 3.

Row 4: T, F, F, T, T, F, F, T, F, F

39 / 63



Subset Sum Problem

Row 5: Elements = {3, 34, 4, 12, 5}
For j = 5: We can achieve a sum of 5 by using only the
element 5, so DP[5][5] = True.

For j = 8: We can achieve a sum of 8 by combining elements
3 and 5, so DP[5][8] = True.

For j = 9: We can achieve a sum of 9 by combining elements
4 and 5, so DP[5][9] = True.

Row 5: T, F, F, T, T, T, F, T, T, T

40 / 63



Subset Sum Problem

Row 6: Elements = {3, 34, 4, 12, 5, 2}
For j = 2: We can achieve a sum of 2 by using only the
element 2, so DP[6][2] = True.

For j = 6: We can achieve a sum of 6 by combining elements
4 and 2, so DP[6][6] = True.

For j = 7: We can achieve a sum of 7, so this remains True.

For j = 8 and j = 9: These values remain True from previous
calculations.

Row 6: T, F, T, T, T, T, T, T, T, T

41 / 63



Subset Sum Problem

Steps to Trace Back and Find the Subset

To identify the subset, trace back through the DP table:
1 Start from DP[n][S ].
2 Compare each DP[i ][j ] with DP[i − 1][j ].
3 Record any element that changes DP[i ][j ] from DP[i − 1][j ].

42 / 63



Subset Sum Problem

Step 1: Start from DP[n][S ]

Begin at DP[6][9], representing using the first 6 elements to
achieve a sum of 9.

Our goal is to trace back through the table to identify which
elements contribute to this sum.

43 / 63



Subset Sum Problem

Step 2: Check Each Element’s Contribution

For each DP[i ][j ]:

If DP[i ][j ] = DP[i − 1][j ], the i-th element was not included.
Move up to DP[i − 1][j ].
If DP[i ][j ] ̸= DP[i − 1][j ], the i-th element was included.
Record it, subtract its value from j , and move to
DP[i − 1][j − ai−1].

44 / 63



Subset Sum Problem

Example Traceback: Starting Point

Starting at DP[6][9]:
DP[6][9] = True and DP[5][9] = True.
Therefore, the 6th element (2) was not needed for the sum.
Move to DP[5][9].

45 / 63



Subset Sum Problem

Example Traceback: Moving to DP[5][9]

Check DP[5][9] and DP[4][9]:
DP[5][9] = True but DP[4][9] = False.
This means the 5th element (5) was included in the subset.
Record 5 as part of the subset and update j = 9− 5 = 4.
Move to DP[4][4].

46 / 63



Subset Sum Problem

Example Traceback: Moving to DP[4][4]

Check DP[4][4] and DP[3][4]:
DP[4][4] = True and DP[3][4] = True.
This means the 4th element (12) was not included.
Move to DP[3][4].

47 / 63



Subset Sum Problem

Example Traceback: Moving to DP[3][4]

Check DP[3][4] and DP[2][4]:
DP[3][4] = True but DP[2][4] = False.
This indicates the 3rd element (4) was included.
Record 4 as part of the subset and update j = 4− 4 = 0.

48 / 63



Subset Sum Problem

Stop Condition

Since j = 0, we have identified all elements in the subset that
sum to the target.

Solution subset: {5, 4}.

49 / 63



Subset Sum Problem

Summary:

The Subset Sum Problem is essentially a simplified version of
the 0/1 Knapsack Problem.

Subset Sum corresponds to a knapsack problem where each
item has a ”value” equal to its weight.

Both share structural similarities in terms of choices and DP
table setup.

50 / 63



Equal Sum Partition Problem

Problem Statement

Given a set of n positive integers {a1, a2, . . . , an}.
Determine if it is possible to partition the set into two subsets
with equal sums.

51 / 63



Equal Sum Partition Problem

Why Total Sum Must Be Even

For two subsets to have equal sums, the total sum of the array
must be even.

Let Total Sum be the sum of all elements in the array.

If the array can be partitioned into two equal-sum subsets,
each subset must sum to:

target =
Total Sum

2

If Total Sum is odd, dividing by 2 results in a non-integer,
making an equal partition impossible.

52 / 63



Equal Sum Partition Problem

Example to Illustrate the Even Sum Requirement

Example 1: Array = {1, 5, 11, 5}
Total Sum = 1 + 5 + 11 + 5 = 22 (even).
Possible to split into subsets that sum to 11.

Example 2: Array = {1, 2, 4}
Total Sum = 1 + 2 + 4 = 7 (odd).
Equal partition is impossible because half of 7 is 3.5, not an
integer.

Conclusion: If Total Sum is odd, return False immediately.

53 / 63



Equal Sum Partition Problem

Reducing to a Subset Sum Problem

If Total Sum is even, the problem reduces to finding a subset
that sums to:

target =
Total Sum

2

This is now a Subset Sum Problem where the goal is to
check if any subset can sum up to target.

54 / 63



Equal Sum Partition Problem

Summary

If the total sum is odd, an equal partition is impossible.

If the total sum is even, reduce the problem to finding a
subset sum equal to half the total sum.

Solve using a DP table to check if a subset with the target
sum exists.

Efficiently determines if an equal partition is possible.

55 / 63



Count of Subsets with a Given Sum Problem

Problem Statement

Given a set of n positive integers {a1, a2, . . . , an}.
A target sum S .

Objective: Count the number of subsets in the set that sum
up to exactly S .

56 / 63



Count of Subsets with a Given Sum Problem

How is this a Variation of the Subset Sum Problem?

This problem is a variation of the Subset Sum Problem,
where we are not just interested in checking if a subset exists,
but in counting all possible subsets that sum to the target S .

57 / 63



Count of Subsets with a Given Sum Problem

Key Differences and Similarities with Subset Sum
1 Problem Objective:

In the Subset Sum Problem, we simply check whether there
exists at least one subset that sums up to a given target.
In the Count of Subsets with a Given Sum Problem, the
objective is to count all possible subsets that sum to the
target, rather than just determining existence.

58 / 63



Count of Subsets with a Given Sum Problem

2 DP Table Structure:
Both problems use a dynamic programming (DP) table to keep
track of achievable sums up to the target.
In the Subset Sum Problem, the DP table typically holds
boolean values (True or False) indicating whether a specific
sum can be achieved.
In the Count of Subsets with a Given Sum Problem, the
DP table holds integer counts, with each cell representing the
number of ways to achieve a particular sum with the first i
elements.

59 / 63



Count of Subsets with a Given Sum Problem

3 Filling the DP Table:
The structure of the DP table and the base cases are very
similar in both problems.
For each element, you decide whether to include or exclude it.
The primary difference lies in how you update the table:

In Subset Sum, you use a logical OR to determine if any
subset can achieve the target sum.
In Count of Subsets, you use addition to accumulate the
counts of subsets that can form the target sum.

60 / 63



Count of Subsets with a Given Sum Problem

4 Recurrence Relation:
In Subset Sum:

DP[i ][j ] = DP[i − 1][j ] OR DP[i − 1][j − ai−1]

In Count of Subsets:

DP[i ][j ] = DP[i − 1][j ] + DP[i − 1][j − ai−1]

Here, the + operation in the count problem replaces the OR
operation in the subset sum problem.

61 / 63



Count of Subsets with a Given Sum Problem

5 Final Result Extraction:
In Subset Sum, you simply check if the target sum is
achievable by examining if DP[n][S ] = True.
In Count of Subsets, you directly retrieve the number of
subsets with sum equal to S by reading the value DP[n][S ].

62 / 63



Count of Subsets with a Given Sum Problem

Summary

The Count of Subsets with a Given Sum Problem can be
thought of as an extension of the Subset Sum Problem.

Instead of verifying the existence of a subset, you count all
possible subsets that sum to a given target.

This variation leverages a similar DP setup but with a focus
on counting configurations, making it a natural extension of
subset sum concepts.

63 / 63


