CS 2500: Algorithms Lecture 24: Dynamic Programming: 0/1 Knapsack Problem

Shubham Chatterjee

Missouri University of Science and Technology, Department of Computer Science

November 7, 2024

イロト イヨト イヨト イヨト 二日

1/63

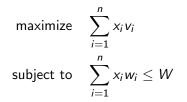
We are given a number of objects and a knapsack.

- We suppose that the objects **may not be broken into smaller pieces**, so we may either take an object or leave it behind.
- Let $i = 1, 2, \ldots, n$ denote the objects.
- Each object *i* has:
 - a positive weight w_i
 - a positive value v_i
- The knapsack has a weight capacity W.
- Goal: Fill the knapsack in a way that maximizes the **total** value of the included objects.

Let $x_i = 0$ if we do not take object *i*, and $x_i = 1$ if we include object *i*.

0/1 Knapsack Problem

Mathematical Formulation



where:

- $v_i > 0$ and $w_i > 0$
- $x_i \in \{0, 1\}$ for $1 \le i \le n$

Constraints:

- v_i and w_i are constants on the instance
- x_i are variables in the solution.

Objective: Maximize the total value without exceeding the weight capacity W.

Greedy Algorithm

- The greedy algorithm suggests choosing objects in order of decreasing ^{v_i}/_{wi} (value per unit weight).
- However, the greedy approach fails when objects cannot be broken.
- Example:
 - Suppose we have three objects:
 - Object 1: weight = 6, value = 8
 - Object 2: weight = 5, value = 5
 - Object 3: weight = 5, value = 5
 - Knapsack capacity = 10.
 - Greedy algorithm would pick object 1 (highest $\frac{v}{w}$), but this leaves no room for other objects.
 - Optimal solution: pick objects 2 and 3, with total value of 10.

Dynamic Programming: Two Main Approaches

- Dynamic programming can be implemented using two main approaches:
 - **1** Top-Down with Memoization
 - Ø Bottom-Up
- Both approaches use a table to store intermediate results, but differ in how the table is filled and the order in which subproblems are solved.

Note: The technical term "memoization" is not a misspelling of "memorization". The word "memoization" comes from "memo" since the technique consists of recording a value to be looked up later.

イロン イボン イヨン イヨン 三日

Order of Filling the Table

Top-Down with Memoization:

- Starts from the "top" (i.e., the original problem) and breaks it down into smaller subproblems recursively.
- For each subproblem, checks if the solution already exists in the table.
- If the solution is not in the table, solves the subproblem and stores the result in the table.
- Recursive calls continue until reaching the base cases, and results are stored ("memoized") as they are computed.

- Begins from the "bottom" by solving the smallest subproblems first and storing their results in the table.
- Uses these stored results to solve larger subproblems iteratively, building up to the solution for the original problem.
- Systematically fills all entries in the table from smallest to largest subproblems.

- Uses recursion with memoization.
- Each recursive call may lead to further recursive calls. Once a subproblem is solved, its result is stored to avoid redundant computation.
- Has a natural recursive structure, making the logic easier to understand for problems that are inherently recursive.

- Uses an iterative approach with loops to fill the table from the smallest subproblems up to the largest.
- Implemented with explicit loops rather than recursive calls, reducing the overhead associated with recursion.
- Builds the solution in a structured, iterative manner, which can be more efficient in practice.

- Only the necessary subproblems are computed, depending on the recursion path taken to solve the main problem.
- In some cases, not all entries in the table are filled, as only the subproblems needed to reach the solution are computed.

- Computes all possible subproblems in a systematic order.
- Every entry in the table is usually filled, even if not all of them are necessary to compute the final result.
- This approach ensures all dependencies are solved in advance, as the solution builds from the smallest subproblems.

- Can have more overhead due to recursive calls, especially if the problem has deep recursion.
- May save some work by only computing the necessary subproblems, which can be efficient in some cases.

- Typically has less overhead, as it avoids recursion and fills the table directly with iterative loops.
- This approach can lead to better performance in practice, especially in languages where recursion is costly.
- More suitable for problems where all subproblems need to be computed systematically.

- Starts with the original problem and breaks it down recursively.
- Uses memoization to store results of subproblems.
- Only solves necessary subproblems based on recursion path.

- Starts with the smallest subproblems and builds up iteratively.
- Systematically fills all table entries, ensuring all dependencies are solved.
- Avoids recursion overhead, typically faster in practice.

0/1 Knapsack: Top-Down Approach with Memoization

Steps for Top-Down Approach:

- Start with the original problem (e.g., max value with all items and full weight capacity).
- Recursively break down the problem:
 - If item *i* is not included, recursively compute the solution for i-1 items with the same capacity.
 - If item *i* is included, recursively compute the solution for i 1 items with reduced capacity $W w_i$.
- Store results in a table (memoization) as each subproblem is solved.
- Retrieve results from the table when the same subproblem is encountered again, avoiding redundant computation.

Note: This recursive approach does not require solving every subproblem in the table; only the subproblems reached by the recursion path are solved.

Let Knapsack(i, w) represent the max value for items 1 to i with weight w:

• Recursive formula:

$$\mathrm{Knapsack}(i,w) = \begin{cases} \mathrm{Knapsack}(i-1,w) & \text{if } w_i > w \\ \max(\mathrm{Knapsack}(i-1,w), v_i + \mathrm{Knapsack}(i-1,w-w_i)) & \text{if } w_i \leq w \end{cases}$$

• Results are stored in a table as subproblems are computed, avoiding redundant recursion.

0/1 Knapsack: Top-Down Approach with Memoization

Algorithm 2 0/1 Knapsack Problem - Top-Down with Memoization **Require:** n: number of items, W: maximum weight capacity of the knapsack **Require:** w[i]: weight of item i, v[i]: value of item i for i = 1, ..., n**Ensure:** Maximum value achievable with weight limit W1: Initialize a 2D memoization array V[0...n][0...W] with all values set to $^{-1}$ \triangleright indicates uncomputed subproblems 2: function KNAPSACK(i, w)if i = 0 or w = 0 then 3: return 0 ▷ Base case: no items or zero capacity yields zero value 4: end if 5: if $V[i][w] \neq -1$ then 6: return V[i][w]▷ Return already computed value 7: 8: end if if $w_i < w$ then 9: $V[i][w] \leftarrow \max(\operatorname{Knapsack}(i-1,w),\operatorname{Knapsack}(i-1,w-w_i)+v_i)$ 10: else 11: $V[i][w] \leftarrow \operatorname{Knapsack}(i-1,w)$ 12:end if 13: 14:return V[i][w]15: end function 16: Compute the solution: Call KNAPSACK(n, W) to fill the memoization table and get the maximum value return V[n][W]

Steps for Bottom-Up Approach:

- Initialize a table (e.g., 2D array) where each entry represents a subproblem (e.g., max value achievable with a certain number of items and a certain weight capacity).
- Fill the table iteratively, row by row or column by column, starting from the smallest subproblems (e.g., 0 items or 0 weight).
- Use the already computed subproblem results to solve larger subproblems in each step.
- The final entry in the table gives the answer to the original problem.

Note: This approach systematically fills all entries in the table, even if not all are necessary to compute the final result.

- Define a table V[i][w] where:
 - *i*: The number of items considered (from 1 to *n*).
 - w: The weight limit (from 0 to W).
 - V[i][w]: The maximum value achievable with items 1,..., *i* and weight capacity *w*.
- Recurrence relation:

$$V[i][w] = \begin{cases} V[i-1][w] & \text{if } w_i > w \\ \max(V[i-1][w], V[i-1][w-w_i] + v_i) & \text{if } w_i \le w \end{cases}$$

- Boundary conditions:
 - V[0][w] = 0 for all w (no items to include).
 - V[i][0] = 0 for all *i* (zero weight capacity).

Algorithm 1 0/1 Knapsack Problem - Bottom-Up Approach

Require: n: number of items, W: maximum weight capacity of the knapsack **Require:** w[i]: weight of item i, v[i]: value of item i for i = 1, ..., n**Ensure:** Maximum value achievable with weight limit W

- 1: Initialize a 2D array V[0...n][0...W] where V[i][w] represents the maximum value achievable with the first *i* items and weight limit *w*
- 2: for i = 0 to n do

3:
$$V[i][0] \leftarrow 0$$
 {0 capacity results in 0 value}

4: end for

5: for
$$w = 0$$
 to W do

6: $V[0][w] \leftarrow 0$ {0 items result in 0 value for any capacity}

7: end for

8: for
$$i = 1$$
 to n do

9: for
$$w = 1$$
 to W do

10: if
$$w_i \leq w$$
 then

1:
$$V[i][w] \leftarrow \max(V[i-1][w], V[i-1][w-w_i] + v_i)$$

12: else

1

13:
$$V[i][w] \leftarrow V[i-1][w]$$

14: end if

15: end for

16: end for

17: return V[n][W] {The maximum value achievable with all items and capacity W} =0

୬ ୯.୯ 16 / 63

Example:

- Objects: weights = 1, 2, 5, 6, 7; values = 1, 6, 18, 22, 28.
- Knapsack capacity = 11.
- Dynamic programming table shows maximum values at different weight capacities.

Weight limit:	0	1	2	3	4	5	6	7	8	9	10	11
$w_1 = 1, v_1 = 1$	0	1	1	1	1	1	1	1	1	1	1	1
$w_2 = 2, v_2 = 6$	0	1	6	7	7	7	7	7	7	7	7	7
$w_3 = 5, v_3 = 18$	0	1	6	7	7	18	19	24	25	25	25	25
$w_4 = 6, v_4 = 22$	0	1	6	7	7	18	22	23	28	29	29	40
$w_5 = 7, v_5 = 28$	0	1	6	7	7	18	22	28	29	34	35	40

Figure: The 0/1 Knapsack Problem using Dynamic Programming.

Row 1: $w_1 = 1, v_1 = 1$

- For weight w = 0: V[1][0] = 0 (knapsack has zero capacity).
- For weight $w \ge 1$: Item 1 fits, so V[1][w] = 1.

Row 1: 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

Row 2:
$$w_2 = 2, v_2 = 6$$

• For $w = 0$: $V[2][0] = 0$.
• For $w = 1$: $V[2][1] = 1$ (only item 1 fits).
• For $w = 2$: Use item 2 alone, $V[2][2] = 6$.
• For $w = 3$: Combine item 1 and item 2, $V[2][3] = 7$.
• For $w \ge 4$: Value remains 7.
Row 2: 0,1,6,7,7,7,7,7,7,7,7,7

Row 3: $w_3 = 5, v_3 = 18$

• For $w \le 4$: Item 3 cannot fit, V[3][w] = V[2][w].

• For w = 5: Use item 3 alone, V[3][5] = 18.

- For w = 6: Use item 3 and item 1, V[3][6] = 19.
- For w = 7: Use item 3 and item 2, V[3][7] = 24.

• For $w \ge 8$: Maximum value is 25.

Row 3: 0, 1, 6, 7, 7, 18, 19, 24, 25, 25, 25, 25

Row 4: $w_4 = 6$, $v_4 = 22$

• For $w \leq 5$: Item 4 cannot fit, V[4][w] = V[3][w].

• For w = 6: Use item 4 alone, V[4][6] = 22.

• For w = 7: Use item 4 and item 1, V[4][7] = 23.

• For w = 8: Use item 4 and item 2, V[4][8] = 28.

• For
$$w = 9$$
: Maximum value is 29.

• For w = 11: Use items 4 and 3, giving V[4][11] = 40.

Row 4: 0, 1, 6, 7, 7, 18, 22, 23, 28, 29, 29, 40

Row 5: $w_5 = 7, v_5 = 28$

- For $w \le 6$: Item 5 cannot fit, V[5][w] = V[4][w].
- For w = 7: Use item 5 alone, V[5][7] = 28.

• For w = 8: Use item 5 and item 1, V[5][8] = 29.

• For w = 9: Use item 5 and item 2, V[5][9] = 34.

 For w = 11: Use items 5 and 3 or items 5 and 4, V[5][11] = 40.

Row 5: 0, 1, 6, 7, 7, 18, 22, 28, 29, 34, 35, 40

Optimal Solution Traceback

- Using the table, trace back to find the composition of the optimal load.
- Example:
 - Start from V[5, 11], check previous cells to identify items included in the optimal solution.
 - Optimal solution consists of objects 3 and 4.
 - Total value = 40.

Algorithm Complexity

- Time Complexity: O(nW)
 - n: Number of items.
 - W: Knapsack capacity.
- Space Complexity: O(nW) for storing the table V.
- Efficient for cases where both n and W are not too large.

- Goal: Determine if there exists a subset of a given set of integers that sums up to a target value *S*.
- This problem can be solved efficiently using DP.
- It shares similarities with the 0/1 Knapsack Problem.

Dynamic Programming Approach: To solve the Subset Sum Problem using DP, we define a DP table where:

- DP[*i*][*j*]: Boolean value indicating whether a subset of the first *i* elements can sum up to *j*.
- DP[i][j] = True if there exists a subset that sums up to j.
- DP[*i*][*j*] = False otherwise.

Similarity to the 0/1 Knapsack Problem

• Decision Problem vs. Optimization Problem:

- Subset Sum is a decision problem (we only care if a solution exists).
- 0/1 Knapsack is an optimization problem (we want the maximum value).

• Structure of Choices:

• In both problems, for each element, we can either include or exclude it.

Recurrence Relation Comparison

• Subset Sum:

 $DP[i][j] = DP[i-1][j] OR DP[i-1][j-a_{i-1}]$

• 0/1 Knapsack:

 $\mathsf{DP}[i][j] = \max(\mathsf{DP}[i-1][j], \mathsf{DP}[i-1][j-w_i] + v_i)$

 In Subset Sum, we use boolean OR; in 0/1 Knapsack, we use max.

DP Table Initialization

- Base Case: DP[0][0] = True. With zero elements, we can achieve a sum of 0 by taking an empty subset.
- First Row: For j > 0, DP[0][j] = False: With zero elements, no non-zero sum is achievable.

Filling the DP Table: For each element *i* (where $1 \le i \le n$) and each possible sum *j* (where $0 \le j \le S$):

• If a_{i-1} is greater than j: Exclude it, so

 $\mathsf{DP}[i][j] = \mathsf{DP}[i-1][j]$

• If $a_{i-1} \leq j$: We have two choices:

 $DP[i][j] = DP[i-1][j] OR DP[i-1][j-a_{i-1}]$

30 / 63

Explanation of the Choices

- DP[i 1][j]: The subset sum j can be achieved without including a_{i-1}.
- DP[i-1][j a_{i-1}]: The subset sum j can be achieved by including a_{i-1}, provided that a subset summing to j a_{i-1} exists among the first i 1 elements.

Result of the DP Table: The solution to the problem will be found in the cell DP[n][S]:

- If DP[n][S] = True, there exists a subset of the array that sums to S.
- If DP[n][S] = False, no such subset exists.

Example:

- Array: $\{3, 34, 4, 12, 5, 2\}$
- Target Sum: 9

We fill the DP table using the rules discussed and check DP[6][9] to see if a subset with sum 9 exists.

Subset Sum Problem

- Given Array: $\{3, 34, 4, 12, 5, 2\}$
- Target Sum: 9

i	j = 0	j = 1	j = 2	j = 3	j = 4	j = 5	j = 6	j = 7	j = 8	j = 9
0 elements	Т	F	F	F	F	F	F	F	F	F
3	Т	F	F	Т	F	F	F	F	F	F
3, 34	Т	F	F	Т	F	F	F	F	F	F
3, 34, 4	Т	F	F	Т	Т	F	F	Т	F	F
3, 34, 4, 12	Т	F	F	Т	Т	F	F	Т	F	F
3, 34, 4, 12, 5	Т	F	F	Т	Т	Т	F	Т	Т	Т
3, 34, 4, 12, 5, 2	Т	F	Т	Т	Т	Т	Т	Т	Т	Т

Figure: DP Table for Array $\{3, 34, 4, 12, 5, 2\}$ and Target Sum 9

Row 0: 0 Elements

- With 0 elements, the only achievable sum is 0.
- Therefore, DP[0][0] = True, and all other entries are **False**.

Row 1: First Element = 3

- For j = 3: We can achieve a sum of 3 by taking only the element 3, so DP[1][3] = True.
- For other values of j > 3: No subset exists that sums to those values with just the element 3.

Row 2: Elements = $\{3, 34\}$

- Adding 34 doesn't help us achieve any new sums below 34.
- Therefore, this row remains the same as Row 1.

Row 2: T, F, F, T, F, F, F, F, F, F

Row 3: Elements = $\{3, 34, 4\}$

- For j = 4: We can achieve a sum of 4 by using only the element 4, so DP[3][4] = True.
- For j = 7: We can achieve a sum of 7 by combining elements 3 and 4, so DP[3][7] = True.

Row 3: T, F, F, T, T, F, F, T, F, F

Row 4: Elements = $\{3, 34, 4, 12\}$

- Adding 12 doesn't allow us to achieve any new sums below 12.
- Therefore, this row remains the same as Row 3.

Row 4: T, F, F, T, T, F, F, T, F, F

Row 5: Elements = $\{3, 34, 4, 12, 5\}$

- For j = 5: We can achieve a sum of 5 by using only the element 5, so DP[5][5] = True.
- For j = 8: We can achieve a sum of 8 by combining elements 3 and 5, so DP[5][8] = True.
- For j = 9: We can achieve a sum of 9 by combining elements 4 and 5, so DP[5][9] = True.

Row 5: T, F, F, T, T, T, F, T, T, T

Row 6: Elements = $\{3, 34, 4, 12, 5, 2\}$

- For j = 2: We can achieve a sum of 2 by using only the element 2, so DP[6][2] = True.
- For j = 6: We can achieve a sum of 6 by combining elements 4 and 2, so DP[6][6] = True.
- For j = 7: We can achieve a sum of 7, so this remains True.
- For j = 8 and j = 9: These values remain True from previous calculations.

Row 6: T, F, T, T, T, T, T, T, T, T

Steps to Trace Back and Find the Subset

- To identify the subset, trace back through the DP table:
 - **1** Start from DP[n][S].
 - **2** Compare each DP[i][j] with DP[i-1][j].
 - Record any element that changes DP[i][j] from DP[i 1][j].

Step 1: Start from DP[n][S]

- Begin at DP[6][9], representing using the first 6 elements to achieve a sum of 9.
- Our goal is to trace back through the table to identify which elements contribute to this sum.

Step 2: Check Each Element's Contribution

- For each DP[i][j]:
 - If DP[i][j] = DP[i 1][j], the i-th element was not included. Move up to DP[i - 1][j].
 - If $DP[i][j] \neq DP[i-1][j]$, the *i*-th element was included. Record it, subtract its value from *j*, and move to $DP[i-1][j-a_{i-1}]$.

Example Traceback: Starting Point

- Starting at DP[6][9]:
 - DP[6][9] = True and DP[5][9] = True.
 - Therefore, the 6th element (2) was not needed for the sum. Move to DP[5][9].

Example Traceback: Moving to DP[5][9]

- Check DP[5][9] and DP[4][9]:
 - DP[5][9] = True but DP[4][9] = False.
 - This means the 5th element (5) was included in the subset.
 - Record 5 as part of the subset and update j = 9 5 = 4.
 - Move to DP[4][4].

Example Traceback: Moving to DP[4][4]

- Check DP[4][4] and DP[3][4]:
 - DP[4][4] = True and DP[3][4] = True.
 - This means the 4th element (12) was not included.
 - Move to DP[3][4].

Example Traceback: Moving to DP[3][4]

- Check DP[3][4] and DP[2][4]:
 - DP[3][4] = True but DP[2][4] = False.
 - This indicates the 3rd element (4) was included.
 - Record 4 as part of the subset and update j = 4 4 = 0.

Stop Condition

- Since *j* = 0, we have identified all elements in the subset that sum to the target.
- Solution subset: $\{5, 4\}$.

Summary:

- The Subset Sum Problem is essentially a simplified version of the 0/1 Knapsack Problem.
- Subset Sum corresponds to a knapsack problem where each item has a "value" equal to its weight.
- Both share structural similarities in terms of choices and DP table setup.

Problem Statement

- Given a set of *n* positive integers $\{a_1, a_2, \ldots, a_n\}$.
- Determine if it is possible to partition the set into two subsets with equal sums.

Why Total Sum Must Be Even

- For two subsets to have equal sums, the total sum of the array must be even.
- Let Total Sum be the sum of all elements in the array.
- If the array can be partitioned into two equal-sum subsets, each subset must sum to:

$$\mathsf{target} = \frac{\mathsf{Total Sum}}{2}$$

• If Total Sum is odd, dividing by 2 results in a non-integer, making an equal partition impossible.

イロト 不同 トイヨト イヨト 二日

Example to Illustrate the Even Sum Requirement

- Example 1: Array = $\{1, 5, 11, 5\}$
 - Total Sum = 1 + 5 + 11 + 5 = 22 (even).
 - Possible to split into subsets that sum to 11.
- Example 2: Array = $\{1, 2, 4\}$
 - Total Sum = 1 + 2 + 4 = 7 (odd).
 - Equal partition is impossible because half of 7 is 3.5, not an integer.
- Conclusion: If Total Sum is odd, return False immediately.

Reducing to a Subset Sum Problem

• If Total Sum is even, the problem reduces to finding a subset that sums to:

$$\mathsf{target} = \frac{\mathsf{Total Sum}}{2}$$

• This is now a **Subset Sum Problem** where the goal is to check if any subset can sum up to target.

Summary

- If the total sum is odd, an equal partition is impossible.
- If the total sum is even, reduce the problem to finding a subset sum equal to half the total sum.
- Solve using a DP table to check if a subset with the target sum exists.
- Efficiently determines if an equal partition is possible.

Problem Statement

- Given a set of *n* positive integers $\{a_1, a_2, \ldots, a_n\}$.
- A target sum S.
- Objective: Count the number of subsets in the set that sum up to exactly *S*.

How is this a Variation of the Subset Sum Problem?

• This problem is a variation of the **Subset Sum Problem**, where we are not just interested in checking if a subset exists, but in counting all possible subsets that sum to the target *S*.

Key Differences and Similarities with Subset Sum

Operation Problem Objective:

- In the **Subset Sum Problem**, we simply check whether there exists at least one subset that sums up to a given target.
- In the **Count of Subsets with a Given Sum Problem**, the objective is to count all possible subsets that sum to the target, rather than just determining existence.

OP Table Structure:

- Both problems use a dynamic programming (DP) table to keep track of achievable sums up to the target.
- In the **Subset Sum Problem**, the DP table typically holds boolean values (True or False) indicating whether a specific sum can be achieved.
- In the **Count of Subsets with a Given Sum Problem**, the DP table holds integer counts, with each cell representing the number of ways to achieve a particular sum with the first *i* elements.

§ Filling the DP Table:

- The structure of the DP table and the base cases are very similar in both problems.
- For each element, you decide whether to include or exclude it. The primary difference lies in how you update the table:
 - In **Subset Sum**, you use a logical OR to determine if any subset can achieve the target sum.
 - In **Count of Subsets**, you use addition to accumulate the counts of subsets that can form the target sum.

- G Recurrence Relation:
 - In Subset Sum:

 $DP[i][j] = DP[i-1][j] OR DP[i-1][j-a_{i-1}]$

In Count of Subsets:

$$DP[i][j] = DP[i-1][j] + DP[i-1][j-a_{i-1}]$$

• Here, the + operation in the count problem replaces the OR operation in the subset sum problem.

inal Result Extraction:

- In Subset Sum, you simply check if the target sum is achievable by examining if DP[n][S] = True.
- In Count of Subsets, you directly retrieve the number of subsets with sum equal to S by reading the value DP[n][S].

Summary

- The **Count of Subsets with a Given Sum Problem** can be thought of as an **extension of the Subset Sum Problem**.
- Instead of verifying the existence of a subset, you count all possible subsets that sum to a given target.
- This variation leverages a similar DP setup but with a focus on counting configurations, making it a natural extension of subset sum concepts.