CS 2500: Algorithms

Lecture 24: Dynamic Programming: 0/1 Knapsack Problem

Shubham Chatterjee

Missouri University of Science and Technology, Department of Computer Science

November 7, 2024

1/63

0/1 Knapsack Problem

We are given a number of objects and a knapsack.

@ We suppose that the objects may not be broken into
smaller pieces, so we may either take an object or leave it
behind.

o Let i=1,2,...,n denote the objects.

@ Each object i has:

e a positive weight w;
e a positive value v;

@ The knapsack has a weight capacity W.

@ Goal: Fill the knapsack in a way that maximizes the total
value of the included objects.

Let x; = 0 if we do not take object /, and x; = 1 if we include
object /.

2/63

0/1 Knapsack Problem

Mathematical Formulation
n
maximize Zx;v;
i=1
n
subject to Zx,-w,- < W
i=1

where:
evi>0and w; >0
o x; € {0,1} for1<i<n
Constraints:
@ v; and w; are constants on the instance
@ Xx; are variables in the solution.

Objective: Maximize the total value without exceeding the weight
capacity W.

3/63

0/1 Knapsack Problem

Greedy Algorithm

@ The greedy algorithm suggests choosing objects in order of
decreasing ;= (value per unit weight).

@ However, the greedy approach fails when objects cannot be
broken.
@ Example:
e Suppose we have three objects:
o Object 1: weight = 6, value = 8
o Object 2: weight = 5, value = 5
o Object 3: weight = 5, value = 5
e Knapsack capacity = 10.
o Greedy algorithm would pick object 1 (highest), but this
leaves no room for other objects.
e Optimal solution: pick objects 2 and 3, with total value of 10.

4/63

Dynamic Programming: Two Main Approaches

@ Dynamic programming can be implemented using two main
approaches:
@ Top-Down with Memoization
@ Bottom-Up
@ Both approaches use a table to store intermediate results, but
differ in how the table is filled and the order in which
subproblems are solved.

Note: The technical term “memoization” is not a misspelling
of “memorization”. The word “memoization” comes from
“memo” since the technique consists of recording a value to
be looked up later.

5/63

Order of Filling the Table

Top-Down with Memoization:
e Starts from the “top” (i.e., the original problem) and breaks it
down into smaller subproblems recursively.
@ For each subproblem, checks if the solution already exists in
the table.
@ If the solution is not in the table, solves the subproblem and
stores the result in the table.
@ Recursive calls continue until reaching the base cases, and
results are stored (“memoized”) as they are computed.
Bottom-Up:
@ Begins from the “bottom” by solving the smallest
subproblems first and storing their results in the table.
@ Uses these stored results to solve larger subproblems
iteratively, building up to the solution for the original problem.
@ Systematically fills all entries in the table from smallest to
largest subproblems.

6/63

Implementation Style

Top-Down with Memoization:
@ Uses recursion with memoization.

@ Each recursive call may lead to further recursive calls. Once a
subproblem is solved, its result is stored to avoid redundant
computation.

@ Has a natural recursive structure, making the logic easier to
understand for problems that are inherently recursive.

Bottom-Up:

@ Uses an iterative approach with loops to fill the table from the
smallest subproblems up to the largest.

@ Implemented with explicit loops rather than recursive calls,
reducing the overhead associated with recursion.

@ Builds the solution in a structured, iterative manner, which
can be more efficient in practice.

7/63

Computation Path

Top-Down with Memoization:

@ Only the necessary subproblems are computed, depending on
the recursion path taken to solve the main problem.

@ In some cases, not all entries in the table are filled, as only the
subproblems needed to reach the solution are computed.

Bottom-Up:
@ Computes all possible subproblems in a systematic order.

@ Every entry in the table is usually filled, even if not all of them
are necessary to compute the final result.

@ This approach ensures all dependencies are solved in advance,
as the solution builds from the smallest subproblems.

8/63

Efficiency and Overhead

Top-Down with Memoization:

@ Can have more overhead due to recursive calls, especially if
the problem has deep recursion.

@ May save some work by only computing the necessary
subproblems, which can be efficient in some cases.

Bottom-Up:

@ Typically has less overhead, as it avoids recursion and fills the
table directly with iterative loops.

@ This approach can lead to better performance in practice,
especially in languages where recursion is costly.

@ More suitable for problems where all subproblems need to be
computed systematically.

9/63

Top-Down vs Bottom-Up: Summary

Top-Down with Memoization:
@ Starts with the original problem and breaks it down recursively.
@ Uses memoization to store results of subproblems.
@ Only solves necessary subproblems based on recursion path.
Bottom-Up:
@ Starts with the smallest subproblems and builds up iteratively.

@ Systematically fills all table entries, ensuring all dependencies
are solved.

@ Avoids recursion overhead, typically faster in practice.

10/63

0/1 Knapsack: Top-Down Approach with Memoization

Steps for Top-Down Approach:
@ Start with the original problem (e.g., max value with all items
and full weight capacity).
@ Recursively break down the problem:
e If item / is not included, recursively compute the solution for
i — 1 items with the same capacity.
e If item i is included, recursively compute the solution for i — 1
items with reduced capacity W — w;.
@ Store results in a table (memoization) as each subproblem is
solved.
Q Retrieve results from the table when the same subproblem is
encountered again, avoiding redundant computation.

Note: This recursive approach does not require solving every
subproblem in the table; only the subproblems reached by the
recursion path are solved.

11/63

0/1 Knapsack: Top-Down Approach with Memoization

Let Knapsack(i, w) represent the max value for items 1 to / with
weight w:

@ Recursive formula:

Knapsack(i — 1, w) if w; >w

Knapsack(i, w) =
! (i, w) {max(Knapsack('i, — 1,w),v; + Knapsack(i — L,w —w;)) ifw;, <w

@ Results are stored in a table as subproblems are computed,
avoiding redundant recursion.

12/63

0/1 Knapsack: Top-Down Approach with Memoization

Algorithm 2 0/1 Knapsack Problem - Top-Down with Memoization

Require: n: number of items, W: maximum weight capacity of the knapsack
Require: w[i]: weight of item 4, v[i]: value of item i fori=1,...,n
Ensure: Maximum value achievable with weight limit W
1: Initialize a 2D memoization array V[0...n][0... W] with all values set to
-1 > indicates uncomputed subproblems

2. function KNAPSACK(Z, w)

3 if i =0o0r w=0 then

4 return 0 > Base case: no items or zero capacity yields zero value
5: end if

6: if V[i][w] # —1 then

7 return Vi][w] > Return already computed value
8 end if

9: if w; < w then

10: Vi][w] + max(Knapsack(i — 1, w), Knapsack(i — 1, w — w;) + v;)

11: else

12: Vi][w] + Knapsack(i — 1, w)

13: end if

14: return V[i][w]

15: end function
16: Compute the solution: Call KNAPSACK(n, W) to fill the memoization
table and get the maximum value return Vn][W]

13/63

0/1 Knapsack: Bottom-Up Approach

Steps for Bottom-Up Approach:

@ Initialize a table (e.g., 2D array) where each entry represents a
subproblem (e.g., max value achievable with a certain number
of items and a certain weight capacity).

@ Fill the table iteratively, row by row or column by column,
starting from the smallest subproblems (e.g., 0 items or 0
weight).

© Use the already computed subproblem results to solve larger
subproblems in each step.

@ The final entry in the table gives the answer to the original
problem.

Note: This approach systematically fills all entries in the
table, even if not all are necessary to compute the final result.

14/63

0/1 Knapsack: Bottom-Up Approach

@ Define a table V[i][w] where:

e i: The number of items considered (from 1 to n).

o w: The weight limit (from 0 to W).

o V/[i][w]: The maximum value achievable with items 1,...,/
and weight capacity w.

@ Recurrence relation:

V[i —1][w] if wj >w

V[i[w] = {max(V[i —1w], V[i = 1][w —wi] +v;) ifw; <w

@ Boundary conditions:

o VI[0][w] = 0 for all w (no items to include).
o VIi][0] =0 for all i (zero weight capacity).

15/63

0/1 Knapsack: Bottom-Up Approach

Algorithm 1 0/1 Knapsack Problem - Bottom-Up Approach

Require: n: number of items, W: maximum weight capacity of the knapsack
Require: wli]: weight of item 7, v[¢]: value of item ¢ fori=1,...,n
Ensure: Maximum value achievable with weight limit W
L: Initialize a 2D array V[0...n][0... W] where V[i][w] represents the maxi-
mum value achievable with the first 4 items and weight limit w
: for i =0 to n do
V[][0] <— 0 {0 capacity results in 0 value}
- end for
: for w =0 to W do
V00][w] <= 0 {0 items result in 0 value for any capacity}
: end for
- for i =1 ton do
for w=1to W do
if w; < w then
Vi][w] < max(V[i — 1][w], V[i — 1][w — w;] + v:)
else
Vi|[w] + V[i — 1][w]
end if
end for
: end for
- return V[n|[W] {The maximum value achievable with all items and ca-
pacity W} =0

F=le R BE=T RN I N

e
N g A2

16/63

0/1 Knapsack: Bottom-Up Approach

Example:
@ Objects: weights =1, 2, 5, 6, 7; values = 1, 6, 18, 22, 28.
@ Knapsack capacity = 11.

@ Dynamic programming table shows maximum values at
different weight capacities.

Weight limit: | 0 | 1|23 [4]| 5 6 7 8 9 | 10 | 11
wi=1lvy=1 [0 |1 |1[1|1]|1 1 1 1 1 1 1
we=2v3=6 [0 |1 |6|7|7|7 T T TT 7
ws3=50,v3=18 |0 |1 |6 |7 |7 |18 19|24 | 25|25 | 25| 25
wg=06,v4=22 |0 |16 |7 |7 |18 22|23 |28 (29|29 |40
ws=T,v5=28 |0 | 1|6 | 77|18 |22 |28 29 |34]|35 |40

Figure: The 0/1 Knapsack Problem using Dynamic Programming.

17/63

0/1 Knapsack: Bottom-Up Approach

Row 1: vy =1,y =1
e For weight w = 0: V[1]{0] = 0 (knapsack has zero capacity).
o For weight w > 1: Item 1 fits, so V[1][w] = 1.

Row 1: 0,1,1,1,1,1,1,1,1,1,1,1

18/63

0/1 Knapsack: Bottom-Up Approach

Row 2: wo, =2, =6
e For w=0: V[2][0] = 0.
e For w=1: V[2][1] =1 (only item 1 fits).
e For w = 2: Use item 2 alone, V[2][2] = 6.
e For w = 3: Combine item 1 and item 2, V[2][3] =7.
@ For w > 4: Value remains 7.
Row 2: 0,1,6,7,7,7,7,7,7,7,7,7

19/63

0/1 Knapsack: Bottom-Up Approach

Row 3: w3 =5,v3 =18
e For w < 4: Item 3 cannot fit, V[3][w] = V[2][w].
e For w =5: Use item 3 alone, V[3][5] = 18.
e For w = 6: Use item 3 and item 1, V[3][6] = 19.
e For w = 7: Use item 3 and item 2, V[3][7] = 24.
@ For w > 8: Maximum value is 25.

Row 3: 0,1,6,7,7,18,19,24,25 25 25 25

20/63

0/1 Knapsack: Bottom-Up Approach

Row 4: wy, =6,v4 =22

e For w < 5: Item 4 cannot fit, V[4][w] = V[3][w].

e For w = 6: Use item 4 alone, V[4][6] = 22.

@ For w =7: Use item 4 and item 1, V[4][7] = 23.

e For w = 8: Use item 4 and item 2, V[4][8] = 28.

@ For w =9: Maximum value is 29.

e For w = 11: Use items 4 and 3, giving V[4][11] = 40.
Row 4: 0,1,6,7,7,18,22,23,28,29,29,40

21/63

0/1 Knapsack: Bottom-Up Approach

Row 5: ws =7, v5 = 28

For w < 6: Item 5 cannot fit, V[5][w] = V[4][w].
For w = 7: Use item 5 alone, V/[5][7] = 28.

For w = 8: Use item 5 and item 1, V/[5][8] = 29.
For w = 9: Use item 5 and item 2, V/[5][9] = 34.

For w = 10: Maximum value is 35.

For w = 11: Use items 5 and 3 or items 5 and 4,
V[5][11] = 40.
Row 5: 0,1,6,7,7,18,22,28,29,34,35,40

22/63

0/1 Knapsack: Bottom-Up Approach

Optimal Solution Traceback

@ Using the table, trace back to find the composition of the
optimal load.
o Example:

e Start from V/[5,11], check previous cells to identify items
included in the optimal solution.

e Optimal solution consists of objects 3 and 4.

o Total value = 40.

23/63

0/1 Knapsack: Bottom-Up Approach

Algorithm Complexity
e Time Complexity: O(nW)
e n: Number of items.
e W: Knapsack capacity.

@ Space Complexity: O(nW) for storing the table V.

o Efficient for cases where both n and W are not too large.

24/63

Subset Sum Problem

@ Goal: Determine if there exists a subset of a given set of
integers that sums up to a target value S.

@ This problem can be solved efficiently using DP.

@ It shares similarities with the 0/1 Knapsack Problem.

25/63

Subset Sum Problem

Dynamic Programming Approach: To solve the Subset Sum
Problem using DP, we define a DP table where:

e DPJi][j]: Boolean value indicating whether a subset of the
first i elements can sum up to j.

@ DPJ[i][j] = True if there exists a subset that sums up to j.
e DPJi][j] = False otherwise.

26/63

Subset Sum Problem

Similarity to the 0/1 Knapsack Problem
o Decision Problem vs. Optimization Problem:
o Subset Sum is a decision problem (we only care if a solution
exists).
o 0/1 Knapsack is an optimization problem (we want the
maximum value).
o Structure of Choices:

e In both problems, for each element, we can either include or
exclude it.

27/63

Subset Sum Problem

Recurrence Relation Comparison
@ Subset Sum:

DP[i][j] = DP[i — 1][j] OR DP[i — 1][j — aj-1]
e 0/1 Knapsack:
DP[i][j] = max(DP[i — 1][j], DP[i — 1][j — wi] + v;)

@ In Subset Sum, we use boolean OR; in 0/1 Knapsack, we use
max.

28/63

Subset Sum Problem

DP Table Initialization

@ Base Case: DP[0][0] = True. With zero elements, we can
achieve a sum of 0 by taking an empty subset.

@ First Row: For j > 0, DP[0][j] = False: With zero elements,
no non-zero sum is achievable.

29/63

Subset Sum Problem

Filling the DP Table: For each element i (where 1 </ < n) and
each possible sum j (where 0 < j < S):

@ If a;_1 is greater than j: Exclude it, so
DP[][j] = DP[i — 1][j]
o If a;_1 < j: We have two choices:

DP[i][j] = DP[i — 1]j] OR DP[i — 1][j — aj_1]

30/63

Subset Sum Problem

Explanation of the Choices
e DP[i — 1][j]: The subset sum j can be achieved without
including a;_1.

e DP[i — 1][j — aj—1]: The subset sum j can be achieved by
including a;_1, provided that a subset summing to j — a;_1
exists among the first i — 1 elements.

31/63

Subset Sum Problem

Result of the DP Table: The solution to the problem will be
found in the cell DP[n][S]:

o If DP[n][S] = True, there exists a subset of the array that
sums to S.

e If DP[n][S] = False, no such subset exists.

32/63

Subset Sum Problem

Example:
e Array: {3,34,4,12,5,2}
o Target Sum: 9

We fill the DP table using the rules discussed and check DP[6][9]
to see if a subset with sum 9 exists.

33/63

Subset Sum Problem

e Given Array: {3,34,4,12/5 2}
e Target Sum: 9

i 3=0|3=1|3=2|3=3|j=4|3=5|7=6|=T7T|=8|3=9
0 elements T F F F F F F F F I
3 T F F T F F F F F F
3,34 T F F T F F F F F F
3,34, 4 T F F T T F F T F F
3,34, 4,12 T F F T T F F T F F
3,34,4,12,5 T F F T T T F T T T
3, 34,4, 12,5, 2 T F T T T T T T T T

Figure: DP Table for Array {3,34,4,12,5,2} and Target Sum 9

34/63

Subset Sum Problem

Row 0: 0 Elements

@ With 0 elements, the only achievable sum is 0.

@ Therefore, DP[0][0] = True, and all other entries are False.
RowO0: T,F,F, F,F,F,F,F,F, F

35/63

Subset Sum Problem

Row 1: First Element = 3

@ For j = 3: We can achieve a sum of 3 by taking only the
element 3, so DP[1][3] = True.

o For other values of j > 3: No subset exists that sums to those
values with just the element 3.

Rowl: T,F,F, T,F,F, F F F F

36/63

Subset Sum Problem

Row 2: Elements = {3,34}
@ Adding 34 doesn’t help us achieve any new sums below 34.
@ Therefore, this row remains the same as Row 1.

Row 2: T,F,F, T,F,F,F,F,F F

37/63

Subset Sum Problem

Row 3: Elements = {3,34,4}

e For j = 4: We can achieve a sum of 4 by using only the
element 4, so DP[3][4] = True.

@ For j = 7: We can achieve a sum of 7 by combining elements
3 and 4, so DP[3][7] = True.

Row3: T,F,F, T, T,F, F, T,F F

38/63

Subset Sum Problem

Row 4: Elements = {3,34,4,12}
@ Adding 12 doesn’t allow us to achieve any new sums below 12.
@ Therefore, this row remains the same as Row 3.

Row 4: T,F,F, T, T,F,F, T,F,F

39/63

Subset Sum Problem

Row 5: Elements = {3,34,4,12 5}
@ For j = 5: We can achieve a sum of 5 by using only the
element 5, so DP[5][5] = True.

@ For j = 8: We can achieve a sum of 8 by combining elements
3 and 5, so DP[5][8] = True.

@ For j =9: We can achieve a sum of 9 by combining elements
4 and 5, so DP[5][9] = True.

Row5: T,F,F, T, T, T,F, T, T, T

40/63

Subset Sum Problem

Row 6: Elements = {3,34,4,12,5, 2}

@ For j = 2: We can achieve a sum of 2 by using only the
element 2, so DP[6][2] = True.

@ For j = 6: We can achieve a sum of 6 by combining elements
4 and 2, so DP[6][6] = True.

@ For j =7: We can achieve a sum of 7, so this remains True.

@ For j =8 and j = 9: These values remain True from previous
calculations.

Rowé6: T,F, T, T, T, T, T, T, T, T

41/63

Subset Sum Problem

Steps to Trace Back and Find the Subset
@ To identify the subset, trace back through the DP table:

@ Start from DP[n][S].
@ Compare each DP[i][j] with DP[i — 1][j].
© Record any element that changes DP[/][j] from DP[i — 1][j].

42/63

Subset Sum Problem

Step 1: Start from DP[n][S]

@ Begin at DP[6][9], representing using the first 6 elements to
achieve a sum of 9.

@ Our goal is to trace back through the table to identify which
elements contribute to this sum.

43/63

Subset Sum Problem

Step 2: Check Each Element’s Contribution
e For each DP[/][j]:

o If DP[i][j] = DP[i — 1][j], the i-th element was not included.
Move up to DP[i — 1][j].
o If DP[/][j] # DP[i — 1][j], the i-th element was included.

Record it, subtract its value from j, and move to
DP[i — 1][j — ai-1]-

4463

Subset Sum Problem

Example Traceback: Starting Point
e Starting at DP[6][9]:
o DP[6][9] = True and DP[5][9] = True.
o Therefore, the 6th element (2) was not needed for the sum.
Move to DP[5][9].

45/63

Subset Sum Problem

Example Traceback: Moving to DP[5][9]
e Check DPI[5][9] and DP[4][9]:
DP[5][9] = True but DP[4][9] = False.
This means the 5th element (5) was included in the subset.

Record 5 as part of the subset and update j =9 —5 =4,
Move to DP[4][4].

46 /63

Subset Sum Problem

Example Traceback: Moving to DP[4][4]
e Check DP[4][4] and DP[3][4]:
o DP[4][4] = True and DP[3][4] = True.

o This means the 4th element (12) was not included.
o Move to DP[3][4].

47/63

Subset Sum Problem

Example Traceback: Moving to DP[3][4]
e Check DP3][4] and DP[2][4]:
o DP[3][4] = True but DP[2][4] = False.

o This indicates the 3rd element (4) was included.
e Record 4 as part of the subset and update j =4 — 4 = 0.

48/63

Subset Sum Problem

Stop Condition

@ Since j = 0, we have identified all elements in the subset that
sum to the target.

@ Solution subset: {5,4}.

49/63

Subset Sum Problem

Summary:

@ The Subset Sum Problem is essentially a simplified version of
the 0/1 Knapsack Problem.

@ Subset Sum corresponds to a knapsack problem where each
item has a "value” equal to its weight.

@ Both share structural similarities in terms of choices and DP
table setup.

50/63

Equal Sum Partition Problem

Problem Statement
@ Given a set of n positive integers {a1, az,...,an}.

@ Determine if it is possible to partition the set into two subsets
with equal sums.

51/63

Equal Sum Partition Problem

Why Total Sum Must Be Even

@ For two subsets to have equal sums, the total sum of the array
must be even.

o Let Total Sum be the sum of all elements in the array.
@ If the array can be partitioned into two equal-sum subsets,
each subset must sum to:

Total Sum

target =
8 2

o If Total Sum is odd, dividing by 2 results in a non-integer,
making an equal partition impossible.

52/63

Equal Sum Partition Problem

Example to lllustrate the Even Sum Requirement

e Example 1: Array = {1,5,11,5}
o Total Sum = 1+5+ 1145 =22 (even).
e Possible to split into subsets that sum to 11.

e Example 2: Array = {1,2,4}
o Total Sum =1+2+4 =7 (odd).
e Equal partition is impossible because half of 7 is 3.5, not an

integer.

@ Conclusion: If Total Sum is odd, return False immediately.

53/63

Equal Sum Partition Problem

Reducing to a Subset Sum Problem

@ If Total Sum is even, the problem reduces to finding a subset

that sums to:
Total Sum
target = — 5

@ This is now a Subset Sum Problem where the goal is to
check if any subset can sum up to target.

54/63

Equal Sum Partition Problem

Summary
o If the total sum is odd, an equal partition is impossible.

@ If the total sum is even, reduce the problem to finding a
subset sum equal to half the total sum.

@ Solve using a DP table to check if a subset with the target
sum exists.

o Efficiently determines if an equal partition is possible.

55/63

Count of Subsets with a Given Sum Problem

Problem Statement
e Given a set of n positive integers {a1, az,...,an}.
@ A target sum S.

@ Objective: Count the number of subsets in the set that sum
up to exactly S.

56 /63

Count of Subsets with a Given Sum Problem

How is this a Variation of the Subset Sum Problem?

@ This problem is a variation of the Subset Sum Problem,
where we are not just interested in checking if a subset exists,
but in counting all possible subsets that sum to the target S.

57/63

Count of Subsets with a Given Sum Problem

Key Differences and Similarities with Subset Sum

© Problem Objective:
o In the Subset Sum Problem, we simply check whether there
exists at least one subset that sums up to a given target.
o In the Count of Subsets with a Given Sum Problem, the
objective is to count all possible subsets that sum to the
target, rather than just determining existence.

58/63

Count of Subsets with a Given Sum Problem

@ DP Table Structure:

o Both problems use a dynamic programming (DP) table to keep
track of achievable sums up to the target.

o In the Subset Sum Problem, the DP table typically holds
boolean values (True or False) indicating whether a specific
sum can be achieved.

o In the Count of Subsets with a Given Sum Problem, the
DP table holds integer counts, with each cell representing the
number of ways to achieve a particular sum with the first /
elements.

59 /63

Count of Subsets with a Given Sum Problem

© Filling the DP Table:
e The structure of the DP table and the base cases are very
similar in both problems.
o For each element, you decide whether to include or exclude it.
The primary difference lies in how you update the table:
@ In Subset Sum, you use a logical OR to determine if any
subset can achieve the target sum.
o In Count of Subsets, you use addition to accumulate the
counts of subsets that can form the target sum.

60 /63

Count of Subsets with a Given Sum Problem

© Recurrence Relation:
o In Subset Sum:

DP[i][j] = DP[i — 1][;] OR DP[i — 1][j — a;—1]
e In Count of Subsets:
DP[i][j] = DP[i — 1][j] + DP[i — 1][j — aj-1]

e Here, the + operation in the count problem replaces the OR
operation in the subset sum problem.

61/63

Count of Subsets with a Given Sum Problem

© Final Result Extraction:
o In Subset Sum, you simply check if the target sum is
achievable by examining if DP[n][S] = True.
o In Count of Subsets, you directly retrieve the number of
subsets with sum equal to S by reading the value DP[n][S].

62/63

Count of Subsets with a Given Sum Problem

Summary

@ The Count of Subsets with a Given Sum Problem can be
thought of as an extension of the Subset Sum Problem.

@ Instead of verifying the existence of a subset, you count all
possible subsets that sum to a given target.

@ This variation leverages a similar DP setup but with a focus
on counting configurations, making it a natural extension of
subset sum concepts.

63/63

