
CS 2500: Algorithms
Lecture 23: Dynamic Programming: Introduction

Shubham Chatterjee

Missouri University of Science and Technology, Department of Computer Science

November 5, 2024

1 / 33



Problem: Calculating Binomial Coefficient

Figure: Recursion tree for calculating the binomial coefficient. We notice
that same subproblem is being solved multiple times.

2 / 33



Problem: Calculating Binomial Coefficients

To calculate the binomial coefficient C (n, k), we can divide
the problem into subproblems, calculating C (n− 1, k − 1) and
C (n − 1, k), and then combine these to obtain the original
solution C (n, k) = C (n − 1, k − 1) + C (n − 1, k).

This recursive approach often results in overlapping
subproblems, as many values of C (i , j) are computed multiple
times across different branches of the recursion tree.

For example, calculating C (5, 2) requires calculating C (4, 1)
and C (4, 2), which themselves require calculations for C (3, 1)
multiple times, leading to redundant calculations.

If we ignore this duplication, the algorithm becomes
inefficient, with exponential time complexity.

3 / 33



Solution: Dynamic Programming

Dynamic programming (DP): A method for solving com-
plex problems by breaking them down into simpler, smaller
subproblems and solving each subproblem only once.

Key Idea: Avoid calculating the same thing twice, usually by
keeping a table of known results that fills up as subinstances
are solved.

4 / 33



What is Dynamic Programming?

Overlapping Subproblems:

Dynamic programming (DP) is effective when a problem can
be divided into subproblems that are solved multiple times.

Example: In the binomial coefficient calculation, calculating
C (5, 2) involves calculating C (3, 1) multiple times, as it
appears in different branches of the recursion tree.

DP saves the results of each subproblem in a table (or
memoization) to avoid re-computing them, reducing the time
complexity from exponential to polynomial.

5 / 33



What is Dynamic Programming?

Optimal Substructure:

A problem exhibits optimal substructure if an optimal solution
to the problem can be constructed from optimal solutions to
its subproblems.

Example: In the binomial coefficient problem, to compute
C (n, k), we can use the formula:

C (n, k) = C (n − 1, k − 1) + C (n − 1, k)

which means the optimal solution C (n, k) depends on the
optimal solutions to the subproblems C (n − 1, k − 1) and
C (n − 1, k).

DP leverages this property to build solutions from previously
computed optimal solutions to subproblems, ensuring each
subproblem is only solved once.

6 / 33



Dynamic Programming Approach for Binomial Coefficients

Figure: To calculate binomial coefficients efficiently, we can use a table of
intermediate results. This table can be filled line by line, where each
entry C (n, k) is the sum of C (n − 1, k − 1) and C (n − 1, k). By storing
only the current line, we reduce space complexity to O(k) and time
complexity to Θ(nk)

7 / 33



Dynamic Programming Approach for Binomial Coefficients

Figure: Suppose we want to calculate C (5, 2). Start by filling in the first
few rows up to n = 5. Use the recursive relation:
C (5, 2) = C (4, 1) + C (4, 2). Calculate C (4, 1) and C (4, 2) similarly,
filling in the values step-by-step. From the table, C (5, 2) = 10.

8 / 33



Making Change Problem

The goal is to devise an algorithm to make change for a given
amount N using the minimum number of coins.

Previously, we considered a greedy approach to this problem.

However, the greedy algorithm may fail to find an optimal
solution in cases where:

Some coin denominations are missing.
There is a shortage of certain coins.

For example, with coins of 1, 4, and 6 units, to make change
for 8 units:

Greedy algorithm uses one 6-unit coin and two 1-unit coins
(total 3 coins).
Optimal solution uses two 4-unit coins (total 2 coins).

Dynamic programming can be used to guarantee the optimal
solution.

9 / 33



Dynamic Programming Approach for Making Change

To solve the making change problem with dynamic
programming, we use a table to store intermediate results.

Define c[i , j ] as the minimum number of coins needed to
make an amount j using the first i denominations.

Assume:

There are n coin denominations, denoted by d1, d2, . . . , dn.
We have an unlimited supply of coins for each denomination.

The table c[i , j ] is filled row by row:

Start from 0 up to the target amount N.
For each denomination, decide whether to include or exclude it
in the current amount calculation.

10 / 33



Dynamic Programming Approach for Making Change:
Recurrence Relation

Base Cases:

Case j = 0:
c[i , 0] = 0 for all i .
Explanation: No coins are needed to make an amount of 0.

Case i = 1 (Only the 1-unit coin is available):
If j < d1: We cannot make the amount j using only the 1-unit
coin, so c[1, j ] = ∞.
If j ≥ d1: We can make the amount j using exactly j coins of
the 1-unit denomination, so c[1, j ] = j .

11 / 33



Dynamic Programming Approach for Making Change:
Recurrence Relation

General Cases:

For c[i , j ], we have two choices:
1 Exclude the i-th denomination di .
2 Include the i-th denomination di .

12 / 33



Dynamic Programming Approach for Making Change:
Recurrence Relation

Case 1: Excluding the Current Coin:

If we exclude the i-th denomination (di ):

The minimum number of coins needed to make amount j is the
same as when we only consider the first i − 1 denominations.
Thus, we have:

c[i , j ] = c[i − 1, j ]

This option is necessary when j < di , as we cannot use the
i-th coin for amount j .

13 / 33



Dynamic Programming Approach for Making Change:
Recurrence Relation

Case 2: Including the Current Coin:

If we include the i-th denomination (di ):

We use one di -coin, so we add 1 to our solution.
The remaining amount to be made is j − di .
Therefore, the recurrence relation becomes:

c[i , j ] = 1 + c[i , j − di ]

This option is only possible if j ≥ di , meaning the current
denomination can contribute to the amount.

14 / 33



Dynamic Programming Approach for Making Change:
Recurrence Relation

Combining the Two Cases:

For each entry c[i , j ], we want the minimum number of coins
needed to make the amount j .

Thus, we take the minimum of the two choices (including or
excluding di ):

c[i , j ] = min(c[i − 1, j ], 1 + c[i , j − di ])

This recurrence ensures that we always choose the option with
the fewest coins.

15 / 33



Dynamic Programming Approach for Making Change:
Recurrence Relation

Complete Recurrence Relation: The complete recurrence
relation is:

c[i , j ] =


∞ if i = 1 and j < di

1 + c[i , j − di ] if i = 1 and j ≥ di

c[i − 1, j ] if j < di

min(c[i − 1, j ], 1 + c[i , j − di ]) otherwise

This formula handles all cases for c[i , j ]:

Base cases and initialization.
Minimum coin selection by combining choices.

16 / 33



Dynamic Programming Approach for Making Change

Dynamic Programming Table Setup

Define c[i , j ]: Minimum number of coins needed to make
amount j using the first i denominations.

Table dimensions: n rows (one for each denomination) and
N + 1 columns (for each amount from 0 to N).

Initialization:

c[i , 0] = 0 for all i , since no coins are needed to make amount
0.
Set c[i , j ] = ∞ initially for all other values.

17 / 33



Dynamic Programming Approach for Making Change

Step 1: Filling Row 1 (Using Only 1-Unit Coins)

For i = 1 (using only the 1-unit coin):

For each amount j from 1 to 8:

c[1, j ] = j

This is because we can only use 1-unit coins, so j coins are
needed to make amount j .

The first row of the table becomes:

c[1, j ] = [0, 1, 2, 3, 4, 5, 6, 7, 8]

18 / 33



Dynamic Programming Approach for Making Change

Step 2: Filling Row 2 (Using Coins of 1 and 4 Units)

For i = 2 (using coins of 1 and 4 units):

For j < 4: We can only use the 1-unit coin, so c[2, j ] = c[1, j ].
For j ≥ 4: We have two choices:

1 Exclude the 4-unit coin: Use c[1, j ].
2 Include the 4-unit coin: Use 1 + c[2, j − 4].

Take the minimum of these two options.

The second row of the table becomes:

c[2, j ] = [0, 1, 2, 3, 1, 2, 3, 2, 3]

19 / 33



Dynamic Programming Approach for Making Change

Step 2: Filling Row 2 (Using Coins of 1 and 4 Units)

For i = 2, we consider both the 1-unit and 4-unit coins.

We fill each column j in row 2 as follows:

For j = 0: No coins are needed to make 0, so c[2, 0] = 0.
For j = 1: Only the 1-unit coin can be used (since j < 4), so
c[2, 1] = c[1, 1] = 1.
For j = 2: Only the 1-unit coin can be used (since j < 4), so
c[2, 2] = c[1, 2] = 2.
For j = 3: Only the 1-unit coin can be used (since j < 4), so
c[2, 3] = c[1, 3] = 3.
For j = 4: We have two choices:

1 Exclude the 4-unit coin: Use the value from the previous row,
c[1, 4] = 4.

2 Include the 4-unit coin: Use 1 + c[2, 0] = 1 (one 4-unit coin
plus the solution for the remaining amount 0).

Take the minimum: c[2, 4] = min(4, 1) = 1.

20 / 33



Dynamic Programming Approach for Making Change

Step 2: Filling Row 2 (Using Coins of 1 and 4 Units)

For i = 2, we consider both the 1-unit and 4-unit coins.
We fill each column j in row 2 as follows:

For j = 5: Two choices:
1 Exclude the 4-unit coin: c[1, 5] = 5.
2 Include the 4-unit coin: 1 + c[2, 1] = 1 + 1 = 2.

Take the minimum: c[2, 5] = min(5, 2) = 2.
For j = 6: Two choices:

1 Exclude the 4-unit coin: c[1, 6] = 6.
2 Include the 4-unit coin: 1 + c[2, 2] = 1 + 2 = 3.

Take the minimum: c[2, 6] = min(6, 3) = 3.
For j = 7: Two choices:

1 Exclude the 4-unit coin: c[1, 7] = 7.
2 Include the 4-unit coin: 1 + c[2, 3] = 1 + 3 = 4.

Take the minimum: c[2, 7] = min(7, 4) = 4.
For j = 8: Two choices:

1 Exclude the 4-unit coin: c[1, 8] = 8.
2 Include the 4-unit coin: 1 + c[2, 4] = 1 + 1 = 2.

Take the minimum: c[2, 8] = min(8, 2) = 2.

21 / 33



Dynamic Programming Approach for Making Change

Step 3: Filling Row 3 (Using Coins of 1, 4, and 6 Units)

For i = 3 (using coins of 1, 4, and 6 units):

For j < 6: We can only use the denominations 1 and 4, so
c[3, j ] = c[2, j ].
For j ≥ 6: We have two choices:

1 Exclude the 6-unit coin: Use c[2, j ].
2 Include the 6-unit coin: Use 1 + c[3, j − 6].

Take the minimum of these two options.

The third row of the table becomes:

c[3, j ] = [0, 1, 2, 3, 1, 2, 1, 2, 2]

22 / 33



Dynamic Programming Approach for Making Change

Final Table

0 1 2 3 4 5 6 7 8

d1 = 1 0 1 2 3 4 5 6 7 8
d2 = 4 0 1 2 3 1 2 3 2 3
d3 = 6 0 1 2 3 1 2 1 2 2

The final answer is in the cell c[3, 8] = 2.

This indicates that the minimum number of coins needed to
make 8 units is 2.

23 / 33



Dynamic Programming Algorithm for Making Change

24 / 33



Dynamic Programming Algorithm for Making Change

Analysis of the Algorithm

The algorithm fills up an n × (N + 1) table, giving it a time
complexity of Θ(nN).

For each entry c[i , j ], the algorithm makes a constant-time
decision.

By storing results in a table, the algorithm avoids redundant
calculations.

This approach ensures that we get the minimum number of
coins needed to make any amount up to N.

25 / 33



Principle of Optimality

The solution to the making change problem obtained by
dynamic programming is straightforward.

However, it is important to understand that it relies on a
fundamental concept called the principle of optimality.

The principle of optimality states:
In an optimal sequence of decisions or choices, each sub-
sequence must also be optimal.

This principle often appears natural in dynamic programming
problems, but it is crucial to the correctness of the solution.

26 / 33



Principle of Optimality

Applying the Principle of Optimality

In the making change problem, we calculate c[i , j ] as:

c[i , j ] = min(c[i − 1, j ], 1 + c[i , j − di ])

This calculation assumes:

If c[i , j ] is the optimal way to make change for j units using
coins of denominations d1 to di ,
Then c[i − 1, j ] and c[i , j − di ] must also represent optimal
solutions for their respective subproblems.

In other words, each value in the table represents the optimal
solution to the subproblem it addresses.

27 / 33



Principle of Optimality

Optimality in Table Values

The only value in the table that we are truly interested in is
c[n,N] (the minimum coins needed for amount N using all
denominations).

However, for c[n,N] to be optimal, each other entry in the
table must also represent optimal choices for their
subproblems.

Thus, we rely on the principle of optimality throughout the
entire table.

28 / 33



Principle of Optimality

When the Principle of Optimality Does Not Apply

Although the principle of optimality may appear obvious, it
does not apply to every problem.

When the principle of optimality does not hold:

It may not be possible to solve the problem using dynamic
programming.

For example, if a problem concerns the optimal use of limited
resources:

The optimal solution to an instance might not be achievable
by combining optimal solutions of subproblems.

29 / 33



Principle of Optimality

Example: Shortest Route Problem

Consider the shortest route from Montreal to Toronto via
Kingston.

If the shortest route from Montreal to Toronto passes through
Kingston:

Then the segment from Montreal to Kingston must be the
shortest possible route.
Similarly, the segment from Kingston to Toronto must also be
the shortest.

In this case, the principle of optimality applies.

30 / 33



Principle of Optimality

When the Principle Fails in Shortest Route Problems

Suppose the fastest way from Montreal to Toronto passes
through Kingston:

It does not necessarily follow that it’s best to drive as fast as
possible from Montreal to Kingston and then from Kingston to
Toronto.
For example, if we use too much fuel on the first half, we may
need to refill later, losing time overall.

Here, the sub-trips from Montreal to Kingston and from
Kingston to Toronto are not independent:

They share resources (fuel).
An optimal solution for one part may prevent an optimal
solution for the other.

In this case, the principle of optimality does not apply.

31 / 33



Principle of Optimality

Why the Principle Often Applies in Dynamic Programming

Despite some exceptions, the principle of optimality applies
more often than not.

Restatement of the principle:
The optimal solution to any nontrivial instance of a prob-
lem is a combination of optimal solutions to some of its
subproblems.

The difficulty in applying this principle lies in identifying which
subproblems are relevant to the solution.

32 / 33



Principle of Optimality

Example of Relevance in Shortest Route Problems

In finding the shortest route from Montreal to Toronto, we
may not need the shortest route from Montreal to Ottawa if it
is not on the path.

Dynamic programming avoids calculating irrelevant
subproblems:

It calculates solutions only for subproblems relevant to the
main problem.

This is one of the strengths of dynamic programming.

33 / 33


