
CS 2500: Algorithms
Lecture 22: Greedy Algorithms: Dijkstra’s Algorithm and

Optimal Merge Pattern

Shubham Chatterjee

Missouri University of Science and Technology, Department of Computer Science

October 31, 2024

1 / 31



Problem

Task:
A delivery company needs to find the shortest route from a
central warehouse in city S to other cities x1, x2, x3, . . . , xn in
the region.
Let dij be the distance or cost to travel directly from city xi to
city xj .

Objective: Find the shortest path from the central warehouse
(source node) to every other city.

Constraint: Only direct connections (edges) between cities
can be used, with each connection having a non-negative cost.

Problems like this can be modeled using graphs and solved
using Dijkstra’s Algorithm for shortest paths.

2 / 31



Single Source Shortest Path Problem: Definition

Consider a directed graph G = (N,A) where:

N is the set of nodes.
A is the set of directed edges.

Each edge has a nonnegative length.

One node is designated as the source node.

Goal: Find the length of the shortest path from the source to
every other node in the graph.

We could also interpret the length of an edge as its cost and
seek the cheapest path from the source to each node.

3 / 31



Single Source Shortest Path: Dijkstra’s Algorithm

Solved by a greedy algorithm called Dijkstra’s algorithm.

The algorithm uses two categories of nodes:

Nodes with PERM status: Nodes for which the shortest path
from the source is known.
Nodes with TEMP status: Nodes whose shortest distance
from the source is not yet known.

4 / 31



Single Source Shortest Path: Dijkstra’s Algorithm

Initialization and Process

Initially, the source node has a PERM status with a distance
of zero.

All other nodes have a TEMP status, as their distances from
the source are not yet determined.

At each step, the algorithm:
1 Chooses the node with the smallest temporary distance from

the source.
2 Changes this node’s status to PERM, marking its distance as

final.

5 / 31



Single Source Shortest Path: Dijkstra’s Algorithm

Updating Distances. For each node with PERM status:

Update the distances of all its neighbors with TEMP status.

For each neighbor v of a node u (u → v):

path[v ] = min(path[v ], path[u] + weight(u, v))

If the new path to v is shorter, update the distance and set
the predecessor of v to u.

6 / 31



Single Source Shortest Path: Dijkstra’s Algorithm

‘Example: Given the directed graph with edge weights below, find
the shortest path from vertex 1 to every other vertex in the graph
using Dijkstra’s Algorithm.

Figure: Example graph for Dijkstra’s Algorithm

7 / 31



Initial Setup

For the source node (node 1), initialize:

path[1] = 0 (distance to itself)

All other nodes have path = infinity (unreachable initially)

Vertex Path (Distance) Predecessor Status

1 0 NIL PERM
2 ∞ NIL TEMP
3 ∞ NIL TEMP
4 ∞ NIL TEMP
5 ∞ NIL TEMP

8 / 31



Iteration 1: Selecting Node 1 (Distance = 0)

Current Node: Vertex 1
Neighbors: Vertices 2, 3, 4, and 5

For 1 → 2: path[2] = min(∞, 0 + 50) = 50
For 1 → 3: path[3] = min(∞, 0 + 30) = 30
For 1 → 4: path[4] = min(∞, 0 + 100) = 100
For 1 → 5: path[5] = min(∞, 0 + 10) = 10

Vertex Path (Distance) Predecessor Status

1 0 NIL PERM
2 50 1 TEMP
3 30 1 TEMP
4 100 1 TEMP
5 10 1 TEMP

9 / 31



Iteration 2: Selecting Node 5 (Distance = 10)

Current Node: Vertex 5
Neighbor: Vertex 4

For 5 → 4: path[4] = min(100, 10 + 10) = 20

Vertex Path (Distance) Predecessor Status

1 0 NIL PERM
2 50 1 TEMP
3 30 1 TEMP
4 20 5 TEMP
5 10 1 PERM

10 / 31



Iteration 3: Selecting Node 4 (Distance = 20)

Current Node: Vertex 4
Neighbors: Vertices 2 and 3

For 4 → 2: path[2] = min(50, 20 + 20) = 40

For 4 → 3: No update since min(30, 20 + 50) = 30

Vertex Path (Distance) Predecessor Status

1 0 NIL PERM
2 40 4 TEMP
3 30 1 TEMP
4 20 5 PERM
5 10 1 PERM

11 / 31



Iteration 4: Selecting Node 3 (Distance = 30)

Current Node: Vertex 3
Neighbor: Vertex 2

For 3 → 2: path[2] = min(40, 30 + 5) = 35

Vertex Path (Distance) Predecessor Status

1 0 NIL PERM
2 35 3 TEMP
3 30 1 PERM
4 20 5 PERM
5 10 1 PERM

12 / 31



Final Table and Shortest Paths

Vertex Path (Distance) Predecessor Status

1 0 NIL PERM
2 35 3 PERM
3 30 1 PERM
4 20 5 PERM
5 10 1 PERM

Final Shortest Paths:

Vertex 2: Path 1 → 3 → 2 with distance 35.
Vertex 3: Path 1 → 3 with distance 30.
Vertex 4: Path 1 → 5 → 4 with distance 20.
Vertex 5: Path 1 → 5 with distance 10.

13 / 31



Single Source Shortest Path: Dijkstra’s Algorithm

14 / 31



Dijkstra’s Algorithm: Proof of Correctness

Theorem: Dijkstra’s algorithm finds the shortest paths from
a source node to all other nodes in a graph with nonnegative
edge weights.

Goal: Prove by induction that:

(a) If a node i is marked as PERM, then path[i] is the length
of the shortest path from the source s to i.

(b) If a node i is marked as TEMP, then path[i] represents
the length of the shortest special path from s to i.

Special path: A path where all intermediate nodes are also
marked as PERM.

15 / 31



Basis Step

Initially:

Only the source node s is marked PERM, and path[s] = 0,
which represents the shortest path to itself.

For all other nodes, path[i] is set to infinity, as no paths
are defined yet, aligning with the algorithm’s initialization.

Thus, both conditions (a) and (b) hold at the start of the
algorithm.

16 / 31



Induction Hypothesis

Assume that:

Condition (a): For every node currently marked as PERM,
path[i] is the shortest path from s to i.

Condition (b): For every node currently marked as TEMP,
path[i] represents the shortest special path from s to i.

This is true just before a new node v is added to the set of PERM
nodes.

17 / 31



Induction Step for Condition (a)

Objective: Show that when a new node v is marked as PERM,
path[v] is the shortest path from s to v.

When v is chosen, it has the smallest path value among all
nodes marked as TEMP.

According to the induction hypothesis, path[v] is the
shortest special path to v.

Contradiction Proof:

Suppose there’s a shorter path to v passing through a node x
marked as TEMP.

Since all edge weights are nonnegative, this alternative path
cannot be shorter, as v was chosen with the smallest path
value.

This contradiction confirms that path[v] is indeed the shortest
path.

18 / 31



Induction Step for Condition (b)

Objective: Prove that after adding v to PERM, path[i] for any
node i still marked TEMP represents the shortest special path from
s to i.

Consider a node w still marked TEMP after v is added to PERM.

Two cases for the shortest special path from s to w:

Path does not pass through v: path[w] remains unchanged.
Path passes through v: length is path[v] + adj[v][w].

The algorithm updates path[w] only if path[v] +

adj[v][w] is shorter, ensuring path[w] is the shortest
special path.

Thus, condition (b) remains true.

19 / 31



Conclusion of the Proof

When Dijkstra’s algorithm completes:

All nodes are marked as PERM, meaning each path[i] is the
shortest path from s to i.

Consequently, path[] contains the shortest distances from the
source to each node.
This concludes the proof that Dijkstra’s algorithm correctly finds
the shortest paths.

20 / 31



Optimal Merge Patterns

Problem: Suppose we have several sorted files and wish to merge
them into one sorted file.

If we merge two sorted files with n and m records, the result
can be obtained in O(n +m) time.

When merging more than two sorted files, we need a strategy
for repeatedly merging files in pairs.

Objective: Determine the optimal way to pairwise merge n sorted
files to minimize the total number of comparisons.

21 / 31



Example of Merging Files

Suppose we have four files x1, x2, x3, x4 with varying sizes.

We could merge x1 and x2 to get a new file y1.

Then merge y1 with x3 to get y2.

Finally, merge y2 with x4 to get the final merged file.

Alternative: We could merge x1 and x2 to get y1, then x3 and x4
to get y2, and finally merge y1 and y2.
Question: Which sequence of merges results in the fewest
comparisons?

22 / 31



Optimal Merge Pattern: Example

Consider files x1, x2, x3 with lengths 30, 20, and 10, respectively.

Merging x1 and x2: 50 comparisons.

Merging result with x3: additional 60 comparisons.

Total comparisons = 110.
Alternatively:

Merge x2 and x3: 30 comparisons.

Merge result with x1: additional 60 comparisons.

Total comparisons = 90.
Thus, the second merge pattern is more efficient.

23 / 31



Optimal Merge Pattern: Greedy Strategy

A greedy strategy can be used to determine the optimal merge
pattern:

At each step, merge the two files with the smallest sizes.

Repeat this process until only one file remains.

This strategy minimizes the total number of comparisons by always
selecting the least costly merge at each step.

24 / 31



Optimal Merge Pattern: Greedy Strategy

Example: Suppose we have five files x1, x2, x3, x4, x5 with sizes 20,
30, 10, 5, and 30.
Following the greedy strategy:

Merge x4 and x3: 15 comparisons.

Merge x1 and x2: 35 comparisons.

Merge the result with x5: 60 comparisons.

Merge the results to get the final merged file.

Total number of comparisons is minimized with this approach.

25 / 31



Two-Way Merge Pattern

Definition: A two-way merge pattern is one in which each merge
step involves the merging of exactly two files.

This can be represented by a binary merge tree.

Each leaf node of the tree represents an individual file.

Each internal node represents a merged result of its two child
nodes.

Figure: Binary merge tree representing a merge pattern.

26 / 31



Optimal Merge Pattern with Priority Queue

Objective: Merge multiple sorted files in an optimal way to
minimize the total comparison cost.

When merging more than two sorted files, the optimal pattern
is achieved by merging the smallest files first.

A priority queue (min-heap) allows us to efficiently retrieve
and merge the smallest files at each step.

27 / 31



Optimal Merge Pattern with Priority Queue

1 Insert all file sizes into a min-priority queue.
2 While more than one file remains in the queue:

Remove the two smallest files.
Merge them, and add the merge cost to a running total.
Insert the merged file back into the priority queue.

3 When only one file remains, the total merge cost represents
the minimum comparisons needed.

28 / 31



Optimal Merge Pattern: Algorithm

29 / 31



Optimal Merge Pattern: Algorithm

Example: Suppose we have file sizes [20, 30, 10, 5, 30]:

1 Insert files into priority queue: [5, 20, 10, 30, 30]

2 Step 1: Merge 5 and 10 (cost = 15) → Total cost = 15

3 Step 2: Merge 15 and 20 (cost = 35) → Total cost = 50

4 Step 3: Merge 30 and 30 (cost = 60) → Total cost = 110

5 Step 4: Merge 35 and 60 (cost = 95) → Total cost = 205

Final total cost = 205, which is the minimum merge cost.

30 / 31



Optimal Merge Pattern: Analysis

Time Complexity: O(n log n)

Inserting each file size into the priority queue takes O(log n).

There are n − 1 merge operations, each involving O(log n) for
extraction and insertion.

Thus, the overall time complexity is O(n log n).

Space Complexity: O(n)

The priority queue stores all file sizes, so space complexity is
O(n).

31 / 31


