CS 2500: Algorithms Lecture 22: Greedy Algorithms: Dijkstra's Algorithm and Optimal Merge Pattern

Shubham Chatterjee

Missouri University of Science and Technology, Department of Computer Science

October 31, 2024

イロト イロト イヨト イヨト 二日

1/31

Problem

• Task:

- A delivery company needs to find the shortest route from a central warehouse in city *S* to other cities $x_1, x_2, x_3, \ldots, x_n$ in the region.
- Let d_{ij} be the distance or cost to travel directly from city x_i to city x_j .
- **Objective:** Find the shortest path from the central warehouse (source node) to every other city.
 - **Constraint:** Only direct connections (edges) between cities can be used, with each connection having a non-negative cost.
- Problems like this can be modeled using graphs and solved using **Dijkstra's Algorithm** for shortest paths.

Single Source Shortest Path Problem: Definition

- Consider a directed graph G = (N, A) where:
 - *N* is the set of nodes.
 - A is the set of directed edges.
- Each edge has a nonnegative length.
- One node is designated as the **source** node.
- **Goal:** Find the length of the shortest path from the source to every other node in the graph.
- We could also interpret the length of an edge as its **cost** and seek the cheapest path from the source to each node.

- Solved by a greedy algorithm called **Dijkstra's algorithm**.
- The algorithm uses two categories of nodes:
 - Nodes with **PERM** status: Nodes for which the shortest path from the source is known.
 - Nodes with **TEMP** status: Nodes whose shortest distance from the source is not yet known.

Initialization and Process

- Initially, the source node has a **PERM** status with a distance of zero.
- All other nodes have a **TEMP** status, as their distances from the source are not yet determined.
- At each step, the algorithm:
 - Chooses the node with the smallest temporary distance from the source.
 - Changes this node's status to PERM, marking its distance as final.

Updating Distances. For each node with PERM status:

- Update the distances of all its neighbors with **TEMP** status.
- For each neighbor v of a node $u (u \rightarrow v)$:

path[v] = min(path[v], path[u] + weight(u, v))

• If the new path to v is shorter, update the distance and set the predecessor of v to u.

'Example: Given the directed graph with edge weights below, find the shortest path from vertex 1 to every other vertex in the graph using Dijkstra's Algorithm.

Figure: Example graph for Dijkstra's Algorithm

Initial Setup

For the source node (node 1), initialize:

- path[1] = 0 (distance to itself)
- All other nodes have path = infinity (unreachable initially)

Vertex	Path (Distance)	Predecessor	Status
1	0	NIL	PERM
2	∞	NIL	TEMP
3	∞	NIL	TEMP
4	∞	NIL	TEMP
5	∞	NIL	TEMP

э

イロン 不同 とくほど 不良 とう

Iteration 1: Selecting Node 1 (Distance = 0)

Current Node: Vertex 1

Neighbors: Vertices 2, 3, 4, and 5

- For $1 \rightarrow 2$: path[2] = min($\infty, 0 + 50$) = 50
- For $1 \rightarrow 3$: path[3] = min($\infty, 0 + 30$) = 30
- For $1 \rightarrow 4$: path[4] = min($\infty, 0 + 100$) = 100
- For $1 \rightarrow 5$: path[5] = min($\infty, 0 + 10$) = 10

Vertex	Path (Distance)	Predecessor	Status
1	0	NIL	PERM
2	50	1	TEMP
3	30	1	TEMP
4	100	1	TEMP
5	10	1	TEMP

イロト イヨト イヨト イヨト

Iteration 2: Selecting Node 5 (Distance = 10)

Current Node: Vertex 5

Neighbor: Vertex 4

 \bullet For 5 \rightarrow 4: path[4] = min(100, 10 + 10) = 20

Vertex	Path (Distance)	Predecessor	Status
1	0	NIL	PERM
2	50	1	TEMP
3	30	1	TEMP
4	20	5	TEMP
5	10	1	PERM

・ロ・・ (日・・ (日・・ (日・

Iteration 3: Selecting Node 4 (Distance = 20)

Current Node: Vertex 4

Neighbors: Vertices 2 and 3

- For $4 \rightarrow 2$: path[2] = min(50, 20 + 20) = 40
- For $4 \rightarrow 3$: No update since min(30, 20 + 50) = 30

Vertex	Path (Distance)	Predecessor	Status
1	0	NIL	PERM
2	40	4	TEMP
3	30	1	TEMP
4	20	5	PERM
5	10	1	PERM

イロト イヨト イヨト イヨト

Iteration 4: Selecting Node 3 (Distance = 30)

Current Node: Vertex 3 **Neighbor:** Vertex 2

• For $3 \rightarrow 2$: path[2] = min(40, 30 + 5) = 35

Vertex	Path (Distance)	Predecessor	Status
1	0	NIL	PERM
2	35	3	TEMP
3	30	1	PERM
4	20	5	PERM
5	10	1	PERM

・ロト ・回ト ・ヨト ・ヨト

Final Table and Shortest Paths

Vertex	Path (Distance)	Predecessor	Status
1	0	NIL	PERM
2	35	3	PERM
3	30	1	PERM
4	20	5	PERM
5	10	1	PERM

Final Shortest Paths:

- Vertex 2: Path $1 \rightarrow 3 \rightarrow 2$ with distance 35.
- Vertex 3: Path $1 \rightarrow 3$ with distance 30.
- Vertex 4: Path $1 \rightarrow 5 \rightarrow 4$ with distance 20.
- Vertex 5: Path $1 \rightarrow 5$ with distance 10.

3

・ロト ・回ト ・ヨト ・ヨト

Single Source Shortest Path: Dijkstra's Algorithm

Algorithm 1 DIJKSTRA (Graph G, Adjacency Matrix adj, Source Node s)

- 1: Initialize path[] with infinity for all nodes except the source
- 2: Initialize status[] with TEMP for all nodes
- 3: Initialize pred[] with NIL for all nodes
- 4: Set path[s] = 0 (distance from source to itself is zero)
- 5: while True do
- 6: Set current = node with minimum temporary distance from source
- 7: if current == NIL then
- 8: **return** {All reachable nodes processed; terminate algorithm}
- 9: end if
- 10: Set status[current] = PERM {Mark current node as permanent}
- 11: for each node i in the graph do
- 12: if adj[current][i] != 0 and status[i] == TEMP then
- 13: if path[current] + adj[current][i] < path[i] then</pre>

```
14: Update path[i] = path[current] + adj[current][i]
```

```
15: Set pred[i] = current
```

- 16: end if
- 17: end if
- 18: end for

```
19: end while
```

Theorem: Dijkstra's algorithm finds the shortest paths from a source node to all other nodes in a graph with nonnegative edge weights.

Goal: Prove by induction that:

- (a) If a node i is marked as PERM, then path[i] is the length of the shortest path from the source s to i.
- (b) If a node i is marked as TEMP, then path[i] represents the length of the shortest special path from s to i.

Special path: A path where all intermediate nodes are also marked as PERM.

Initially:

- Only the source node s is marked PERM, and path[s] = 0, which represents the shortest path to itself.
- For all other nodes, path[i] is set to infinity, as no paths are defined yet, aligning with the algorithm's initialization.

Thus, both conditions (a) and (b) hold at the start of the algorithm.

Assume that:

- Condition (a): For every node currently marked as PERM, path[i] is the shortest path from s to i.
- Condition (b): For every node currently marked as TEMP, path[i] represents the shortest special path from s to i.

This is true just before a new node \boldsymbol{v} is added to the set of PERM nodes.

Objective: Show that when a new node v is marked as PERM, path[v] is the shortest path from s to v.

- When v is chosen, it has the smallest path value among all nodes marked as TEMP.
- According to the induction hypothesis, path[v] is the shortest special path to v.

Contradiction Proof:

- Suppose there's a shorter path to v passing through a node x marked as TEMP.
- Since all edge weights are nonnegative, this alternative path cannot be shorter, as v was chosen with the smallest path value.

This contradiction confirms that path[v] is indeed the shortest path.

Objective: Prove that after adding v to PERM, path[i] for any node i still marked TEMP represents the shortest special path from s to i.

- Consider a node w still marked TEMP after v is added to PERM.
- Two cases for the shortest special path from s to w:
 - Path does not pass through v: path[w] remains unchanged.
 - Path passes through v: length is path[v] + adj[v][w].
- The algorithm updates path[w] only if path[v] + adj[v][w] is shorter, ensuring path[w] is the shortest special path.

Thus, condition (b) remains true.

When Dijkstra's algorithm completes:

• All nodes are marked as PERM, meaning each path[i] is the shortest path from s to i.

Consequently, path[] contains the shortest distances from the source to each node.

This concludes the proof that Dijkstra's algorithm correctly finds the shortest paths.

Problem: Suppose we have several sorted files and wish to merge them into one sorted file.

- If we merge two sorted files with n and m records, the result can be obtained in O(n + m) time.
- When merging more than two sorted files, we need a strategy for repeatedly merging files in pairs.

Objective: Determine the optimal way to pairwise merge *n* sorted files to minimize the total number of comparisons.

Suppose we have four files x_1, x_2, x_3, x_4 with varying sizes.

- We could merge x_1 and x_2 to get a new file y_1 .
- Then merge y_1 with x_3 to get y_2 .
- Finally, merge y_2 with x_4 to get the final merged file.

Alternative: We could merge x_1 and x_2 to get y_1 , then x_3 and x_4 to get y_2 , and finally merge y_1 and y_2 . **Question**: Which sequence of merges results in the fewest comparisons? Consider files x_1, x_2, x_3 with lengths 30, 20, and 10, respectively.

- Merging x_1 and x_2 : 50 comparisons.
- Merging result with x_3 : additional 60 comparisons.

Total comparisons = 110.

Alternatively:

- Merge x_2 and x_3 : 30 comparisons.
- Merge result with x_1 : additional 60 comparisons.

Total comparisons = 90.

Thus, the second merge pattern is more efficient.

A greedy strategy can be used to determine the optimal merge pattern:

- At each step, merge the two files with the smallest sizes.
- Repeat this process until only one file remains.

This strategy minimizes the total number of comparisons by always selecting the least costly merge at each step.

Example: Suppose we have five files x_1, x_2, x_3, x_4, x_5 with sizes 20, 30, 10, 5, and 30.

Following the greedy strategy:

- Merge x_4 and x_3 : 15 comparisons.
- Merge x_1 and x_2 : 35 comparisons.
- Merge the result with x_5 : 60 comparisons.
- Merge the results to get the final merged file.

Total number of comparisons is minimized with this approach.

Two-Way Merge Pattern

Definition: A two-way merge pattern is one in which each merge step involves the merging of exactly two files.

- This can be represented by a binary merge tree.
- Each leaf node of the tree represents an individual file.
- Each internal node represents a merged result of its two child nodes.

Figure: Binary merge tree representing a merge pattern.

イロン イボン イヨン イヨン 三日

Objective: Merge multiple sorted files in an optimal way to minimize the total comparison cost.

- When merging more than two sorted files, the optimal pattern is achieved by merging the smallest files first.
- A **priority queue** (min-heap) allows us to efficiently retrieve and merge the smallest files at each step.

- Insert all file sizes into a min-priority queue.
- While more than one file remains in the queue:
 - Remove the two smallest files.
 - Merge them, and add the merge cost to a running total.
 - Insert the merged file back into the priority queue.
- When only one file remains, the total merge cost represents the minimum comparisons needed.

Algorithm 1 OPTIMALMERGE(files)

- 1: Initialize a priority queue pq and insert all elements of files into pq.
- $2: \texttt{total_cost} \gets 0$
- 3: while pq contains more than one element do
- 4: first \leftarrow extract_min(pq) {Extract the smallest file}
- 5: second \leftarrow extract_min(pq) {Extract the next smallest file}
- 6: $merge_cost \leftarrow first + second$
- 7: $total_cost \leftarrow total_cost + merge_cost$
- 8: insert(pq, merge_cost) {Insert merged file back into the queue}
- 9: end while
- 10: return total_cost

Example: Suppose we have file sizes [20, 30, 10, 5, 30]: a Insert files into priority queue: [5, 20, 10, 30, 30] c Step 1: Merge 5 and 10 (cost = 15) \rightarrow Total cost = 15 c Step 2: Merge 15 and 20 (cost = 35) \rightarrow Total cost = 50 c Step 3: Merge 30 and 30 (cost = 60) \rightarrow Total cost = 110 c Step 4: Merge 35 and 60 (cost = 95) \rightarrow Total cost = 205 Final total cost = 205, which is the minimum merge cost.

Time Complexity: $O(n \log n)$

- Inserting each file size into the priority queue takes $O(\log n)$.
- There are n-1 merge operations, each involving $O(\log n)$ for extraction and insertion.
- Thus, the overall time complexity is $O(n \log n)$.

Space Complexity: O(n)

• The priority queue stores all file sizes, so space complexity is O(n).