CS 2500: Algorithms

Lecture 21: Greedy Algorithms: Minimum Spanning Tree

Shubham Chatterjee
Missouri University of Science and Technology, Department of Computer Science

October 29, 2024

1/34

o Task:
e An telephone company wants to lay lines connecting some
cities x1, X2, X3, . . . Xp.

o Let x;; be the cost of laying the line from x; to x;.

@ Objective: Cheapest possible network serving all the towns in
question.

e Constraint: Only direct links between towns can be used.

@ Problems like this can be modelled using Graphs, and solved
using Minimum Spanning Tree Algorithms.

2/34

Spanning Tree

Let G = (N, A) be an undirected connected graph. A sub-
graph t = (N, A") of G is a spanning tree of G if and only if
tis a tree.

Figure: A graph with four of its spanning trees.

3/34

Minimum Spanning Trees

@ A mimimum spanning tree is a minimal subgraph G’ of G
such that N(G’) = N(G) and G’ is connected.
e We want to find T C A such that:

@ All nodes N in G remain connected when only edges in T are
used.
@ Sum of the cost of the edges in T is as small as possible.

4/34

Minimum Spanning Tree

e Let G’ = (N, T) be the partial graph formed by the nodes of
G and the edges in T, where N has n nodes.

@ A connected graph with n nodes must have at least n — 1
edges for minimal connectivity.

@ Any graph with more than n — 1 edges would contain at least
one cycle.

@ If G’ is connected and T has more than n — 1 edges,
removing an edge in a cycle without disconnecting G’ will:

o Either decrease the total length of the edges in T, or
o Leave the total length the same while reducing the edge count.

@ Thus, a set T with n or more edges cannot be optimal for a
spanning tree.

@ Conclusion: T must have exactly n — 1 edges and, since G’ is
connected, it must form a tree.

5/34

Weighted Graphs and Minimum Spanning Trees

Weighted Graphs:
@ In practical situations, edges may have weights representing
cost, length, etc.
@ The goal is to find a spanning tree with the minimum total
cost or length.

—

[N &7
Graph(V,E) = T

[T—

e

All Possible MST's of the above Graph

MST Cost =6 MST Cost =6 MST Cost =6 MST Cost =6

6/34

Subset Paradigm

Subset Paradigm:

@ Finding a minimum spanning tree involves selecting a subset
of edges with the minimum sum of weights.

@ This selection avoids cycles and ensures connectivity, fitting
the subset paradigm.

7/34

Greedy Approach for Minimum Spanning Tree

Approaches:
@ Two main strategies for a greedy algorithm:
e Start with an empty set T and select the shortest edge that
hasn't been chosen or rejected, regardless of position.
@ Choose a node and build a tree from there, selecting the
shortest available edge that extends the tree to a new node.
o Both approaches work for finding a minimum-cost
spanning tree.

8/34

General Schema of the Greedy Algorithm

Key Concepts:
e Candidates: The edges in G.

@ Solution Set: A set of edges that forms a spanning tree for
the nodes in N.

o Feasibility: A set of edges is feasible if it does not contain a
cycle.

@ Selection Function: Varies based on the chosen greedy
algorithm.

@ Objective: Minimize the total length of the edges in the
solution.

9/34

Minimum Spanning Tree: Kruskal's Algorithm

How the Algorithm Works: The Big Idea

@ Start with an empty set T.

@ While T is not a spanning tree:
e Examine edges of G in increasing order of length.
o If an edge connects nodes in different components, add it to T.
o If an edge connects nodes in the same component, reject it to
avoid cycles.
@ The algorithm stops when only one connected component
remains, forming a minimum spanning tree for all nodes.

10/34

Minimum Spanning Tree: Kruskal's Algorithm

Example:
o Consider a graph with nodes connected by edges in increasing
order of length:

(1,2),(2,3),(4,5),(1,4),(5,6),(7,1),(4,2),(5,7),(4,7)
e Initial connected components: {1}, {2}, {3}, {4}, {5}, {6},
{7}.

Figure: A graph with its MST.

11/34

Minimum Spanning Tree: Kruskal's Algorithm

Step Edge Considered Connected Components
Initialization {1}, {2}, {3}, {4}, {5}, {6}, {7}

1 (1, 2) {1, 2}, {3}, {4}, {5}, {6}, {7}
2 (2.3) {1, 2, 3}, {4}, {5}, {6} {7}
3 (4, 5) {1, 2, 3}, {4, 5}, {6}, {7}
4 (5, 6) {1, 2, 3}, {4, 5,6}, {7}
5 (1, 4) {1,2,3,4,5, 6}, {7}
6 (7, 1) {1,2,3,4,5,6,7}
7 (4, 2) Rejected
8 (5,7) Rejected
9 (4,7) Rejected

Result: The minimum spanning tree includes edges
(1,2),(2,3),(4,5),(5,6),(1,4),(7,1) with a total length of 17.

12/34

Minimum Spanning Tree: Kruskal's Algorithm

How the Algorithm Works: Implementation

Kruskal's Algorithm is implemented using a data structure
called Disjoint Sets or Union-Find.

@ Sort all edges in the graph by weight.

@ Initialize an empty forest, where each vertex is a separate tree.
© Repeat until the forest has a single tree:

o Pick the smallest edge. If it connects two different trees, add it
to the MST.

e Use the Union-Find data structure to efficiently check if the
edge creates a cycle.

13/34

Union-Find Data Structure

@ Union-Find is a data structure used to keep track of elements
in disjoint sets.
@ It supports two primary operations:

e Find: Determine which subset a particular element is in.
e Union: Join two subsets into a single subset.

14 /34

Union-Find Data Structure

Union-Find Operations:
o MakeSet(x): Create a new set containing x.
e Find(x): Returns the representative of the set containing x.
e Union(x, y): Merge the sets containing x and y.
Rank:
@ Estimate of the “depth” of a tree in the Union-Find data
structure.

@ Helps decide which tree (or set) should become a subtree of
the other. The set with the lower rank is attached under the
set with the higher rank.

15/34

Union-Find Data Structure

Path Compression: Technique to make the Find operation
faster by flattening the structure of the tree.
@ During Find (x), we make each node on the path from x to
the root point directly to the root.
@ This reduces the depth of the tree, so subsequent Find
operations become faster.
Effect: Path Compression ensures that the tree remains flat,
which, combined with Union by Rank, leads to nearly constant
time complexity for both Union and Find.

16/34

Union-Find Data Structure

Union by Rank: Heuristic used in the Union operation to keep
the tree balanced.

@ Rank represents an estimate of the tree depth for each root.
@ When performing Union(x, y):
o Find the roots of x and y, say rootX and rootY.

o Attach the tree with the lower rank to the tree with the higher
rank.

e If ranks are equal, make one root the parent of the other and
increase its rank by 1.

@ This approach keeps the trees as shallow as possible, making
future Find operations faster.

17/34

Union-Find Data Structure

Algorithm MakeSet(x)

1: Set parent(x) <— x > Set the pointer to point to itself
2: Set rank(x) < 0 > Initialize the rank of x as 0
3: Return

18/34

Union-Find Data Structure

Algorithm Find(x)

if x # parent(x) then

parent(x) < Find(parent(x)) > Path compression
end if
: Return parent(x)

2R PE

19/34

Union-Find Data Structure

Algorithm Union(x, y)

1. rootX < Find(x)

2: rootY < Find(y)

3: if rootX # rootY then

4: if rank(rootX) > rank(rootY) then
5: parent(rootY') < rootX

6 else if rank(rootX) < rank(rootY) then
7: parent(rootX) < rootY

8 else

0: parent(rootY') < rootX

10: rank(rootX) < rank(rootX) + 1
11: end if

12: end if

20/34

Minimum Spanning Tree: Kruskal's Algorithm

Algorithm Kruskal(G)

1: for each vertex n € N do

2 MakeSet(n)

3: end for

4: Sort edges A in non-decreasing order by weight
5 T+ 0

6: for each edge (u,v) € A in sorted order do

7 if Find(u) # Find(v) then

8 Union(u, v)

9: T+ TUu,v

10: end if
11: end for
12: Return T > T is the MST of G

21/34

Kruskal's Algorithm: Time Complexity Analysis

Step 1: Sorting Edges
@ The first step in Kruskal's Algorithm is to sort all edges by
weight.
@ Sorting a edges takes O(alog a).

@ Sincen—1<a< @ this is approximately ©(alog n).

Conclusion

Sorting contributes ©(alog n) to the overall time complexity.

22/34

Kruskal's Algorithm: Time Complexity Analysis

Step 2: Initializing Disjoint Sets
@ Each node in the graph is initially placed in its own set.

@ Using the Union-Find data structure, this initialization step
takes ©(n) time.

Conclusion

Initializing disjoint sets contributes ©(n) to the time complexity.

23/34

Kruskal's Algorithm: Time Complexity Analysis

Step 3: Union-Find Operations

@ In the Union-Find data structure, Find and Union operations
can vary in time, but their average cost over multiple
operations is close to constant.

@ How do we say this mathematically?

o We use the inverse Ackermann function «(n)

24/34

The Inverse Ackermann Function «(n)

@ The inverse Ackermann function, a(n), is a very slowly
growing function used in theoretical computer science.

@ It appears in the analysis of Union-Find with path compression
and union by rank.

@ «a(n) grows so slowly that for any practical input size,
a(n) < 5.

Relevance to Union-Find

With path compression and union by rank, the Find and Union
operations have an amortized complexity of O(«(n)), close to
constant for real-world applications.

Amortized Analysis: Helps us find the average time per operation
over a sequence of operations, rather than analyzing the worst-case
time for each individual operation.

25/34

Kruskal's Algorithm: Time Complexity Analysis

Step 3: Union-Find Operations

@ The total time complexity for all Find and Union operations
is ©(2a - «(2a, n)).

@ Here, « is the inverse Ackermann function, which grows very
slowly.

Conclusion

Union-Find operations contribute ©(2a - «(2a, n)), which is very
efficient and close to O(a).

26 /34

Kruskal's Algorithm: Time Complexity Analysis

Remaining Operations
e Additional operations (such as comparisons) contribute at
most ©(a) to the total complexity.
@ This term is insignificant compared to the other terms in the
analysis.

Conclusion
The remaining operations do not affect the overall time complexity
significantly.

27 /34

Kruskal's Algorithm: Time Complexity Analysis

Overall Time Complexity

@ The total time complexity of Kruskal's Algorithm is
dominated by the sorting and Union-Find steps.

@ Thus, the overall time complexity is:
©(alogn)

@ Since «(2a, n) is almost constant, it does not significantly
impact the complexity.

28/34

Kruskal's Algorithm: Proof of Correctness

o Promising Set:
o A feasible set of edges is promising if it can be extended to
form an optimal solution.
e The empty set is always promising, as an optimal solution
always exists.
o If a promising set is already a solution, it must be optimal.

o Edge Leaves a Set: An edge leaves a set of nodes if exactly
one end is in the set.
o Lemma:
o Let G = (N, A) be a connected undirected graph where the
length of each edge is given.
o Let B C N be a strict subset of the nodes of G.
o Let T C A be a promising set of edges such that no edge in T
leaves B.
o Let v be the shortest edge that leaves B (or one of the
shortest if ties exist).
e Then T U{v} is promising.

29/34

Kruskal's Algorithm: Proof of Correctness

Proof Outline (Induction on the Number of Edges in T):
o Basis:
e The empty set is promising because G is connected, and a
solution must exist.
@ Induction Step:
e Assume T is promising just before adding a new edge
e={u,v}.
e The edges in T divide G into two or more connected

components; u is in one component and v in another.
o Let B be the set of nodes in the component containing u.

@ B is a strict subset of the nodes of G.
o T is promising, with no edge in T leaving B.
@ e is one of the shortest edges leaving B, satisfying Lemma.

e By Lemma, T U {e} is also promising.
e Conclusion:
e When the algorithm stops, T is a solution and is promising,
hence optimal.

30/34

Minimum Spanning Tree: Prim's Algorithm

Two main strategies for a greedy algorithm:

o Kruskal: Start with an empty set T and select the shortest
edge that hasn't been chosen or rejected, regardless of
position.

@ Prim: Choose a node and build a tree from there, selecting
the shortest available edge that extends the tree to a new
node.

31/34

Minimum Spanning Tree: Prim's Algorithm

Algorithm Prim(G, length)

L. T+0

2: Choose an arbitrary node v and initialize B = {u}

3: while B # N do

4: Find the edge {u, v} of minimum length such that

ueBandveN\B
Add v to B and {u,v} to T
6: end while
7: Return T as the minimum spanning tree

S

32/34

Minimum Spanning Tree: Prim's Algorithm

Example (same as Slide 13):

Step Edge {u, v} Considered | B (Nodes in MST)
Initialization {1}
1 1,2} 1,2}
2 (2,3} 1,2 3}
3 {1, 4} {1, 2, 3, 4}
4 (4,5} (1,23, 4 5!
5 (3,7} 1,23, 4,5, 7}
6 (7,6} {1,2,3,4,5 6,7}

Result: The MST includes edges
(1,2),(2,3),(1,4).(4,5),(4,7),(7.6).

33/34

Quick Assignment 5: Prim’s Algorithm: Proof of

Correctness

Proof Outline:

@ The proof is by mathematical induction on the number of
edges in the set T.

@ We shall show that if T is promising at any stage of the
algorithm, then it is still promising when an extra edge has
been added.

@ When the algorithm stops, T gives a solution to our problem;
since it is also promising, this solution is optimal.

@ Similar to how we proved correctness of Kruskal's Algorithm.

34/34

