
CS 2500: Algorithms
Lecture 21: Greedy Algorithms: Minimum Spanning Tree

Shubham Chatterjee

Missouri University of Science and Technology, Department of Computer Science

October 29, 2024

1 / 34



Problem

Task:
An telephone company wants to lay lines connecting some
cities x1, x2, x3, . . . xn.
Let xij be the cost of laying the line from xi to xj .

Objective: Cheapest possible network serving all the towns in
question.

Constraint: Only direct links between towns can be used.

Problems like this can be modelled using Graphs, and solved
using Minimum Spanning Tree Algorithms.

2 / 34



Spanning Tree

Let G = (N,A) be an undirected connected graph. A sub-
graph t = (N,A′) of G is a spanning tree of G if and only if
t is a tree.

Figure: A graph with four of its spanning trees.

3 / 34



Minimum Spanning Trees

A mimimum spanning tree is a minimal subgraph G ′ of G
such that N(G ′) = N(G ) and G ′ is connected.

We want to find T ⊂ A such that:
1 All nodes N in G remain connected when only edges in T are

used.
2 Sum of the cost of the edges in T is as small as possible.

4 / 34



Minimum Spanning Tree

Let G ′ = (N,T ) be the partial graph formed by the nodes of
G and the edges in T , where N has n nodes.

A connected graph with n nodes must have at least n − 1
edges for minimal connectivity.

Any graph with more than n − 1 edges would contain at least
one cycle.

If G ′ is connected and T has more than n − 1 edges,
removing an edge in a cycle without disconnecting G ′ will:

Either decrease the total length of the edges in T , or
Leave the total length the same while reducing the edge count.

Thus, a set T with n or more edges cannot be optimal for a
spanning tree.

Conclusion: T must have exactly n − 1 edges and, since G ′ is
connected, it must form a tree.

5 / 34



Weighted Graphs and Minimum Spanning Trees

Weighted Graphs:

In practical situations, edges may have weights representing
cost, length, etc.
The goal is to find a spanning tree with the minimum total
cost or length.

Figure: A graph with its MST.

6 / 34



Subset Paradigm

Subset Paradigm:

Finding a minimum spanning tree involves selecting a subset
of edges with the minimum sum of weights.

This selection avoids cycles and ensures connectivity, fitting
the subset paradigm.

7 / 34



Greedy Approach for Minimum Spanning Tree

Approaches:

Two main strategies for a greedy algorithm:

Start with an empty set T and select the shortest edge that
hasn’t been chosen or rejected, regardless of position.
Choose a node and build a tree from there, selecting the
shortest available edge that extends the tree to a new node.

Both approaches work for finding a minimum-cost
spanning tree.

8 / 34



General Schema of the Greedy Algorithm

Key Concepts:

Candidates: The edges in G .

Solution Set: A set of edges that forms a spanning tree for
the nodes in N.

Feasibility: A set of edges is feasible if it does not contain a
cycle.

Selection Function: Varies based on the chosen greedy
algorithm.

Objective: Minimize the total length of the edges in the
solution.

9 / 34



Minimum Spanning Tree: Kruskal’s Algorithm

How the Algorithm Works: The Big Idea

Start with an empty set T .

While T is not a spanning tree:

Examine edges of G in increasing order of length.
If an edge connects nodes in different components, add it to T .
If an edge connects nodes in the same component, reject it to
avoid cycles.

The algorithm stops when only one connected component
remains, forming a minimum spanning tree for all nodes.

10 / 34



Minimum Spanning Tree: Kruskal’s Algorithm

Example:

Consider a graph with nodes connected by edges in increasing
order of length:

(1, 2), (2, 3), (4, 5), (1, 4), (5, 6), (7, 1), (4, 2), (5, 7), (4, 7)

Initial connected components: {1}, {2}, {3}, {4}, {5}, {6},
{7}.

Figure: A graph with its MST.

11 / 34



Minimum Spanning Tree: Kruskal’s Algorithm

Step Edge Considered Connected Components

Initialization {1}, {2}, {3}, {4}, {5}, {6}, {7}
1 (1, 2) {1, 2}, {3}, {4}, {5}, {6}, {7}
2 (2, 3) {1, 2, 3}, {4}, {5}, {6}, {7}
3 (4, 5) {1, 2, 3}, {4, 5}, {6}, {7}
4 (5, 6) {1, 2, 3}, {4, 5, 6}, {7}
5 (1, 4) {1, 2, 3, 4, 5, 6}, {7}
6 (7, 1) {1, 2, 3, 4, 5, 6, 7}
7 (4, 2) Rejected

8 (5, 7) Rejected

9 (4, 7) Rejected

Result: The minimum spanning tree includes edges
(1, 2), (2, 3), (4, 5), (5, 6), (1, 4), (7, 1) with a total length of 17.

12 / 34



Minimum Spanning Tree: Kruskal’s Algorithm

How the Algorithm Works: Implementation

Kruskal’s Algorithm is implemented using a data structure
called Disjoint Sets or Union-Find.

1 Sort all edges in the graph by weight.

2 Initialize an empty forest, where each vertex is a separate tree.
3 Repeat until the forest has a single tree:

Pick the smallest edge. If it connects two different trees, add it
to the MST.
Use the Union-Find data structure to efficiently check if the
edge creates a cycle.

13 / 34



Union-Find Data Structure

Union-Find is a data structure used to keep track of elements
in disjoint sets.

It supports two primary operations:

Find: Determine which subset a particular element is in.
Union: Join two subsets into a single subset.

14 / 34



Union-Find Data Structure

Union-Find Operations:

MakeSet(x): Create a new set containing x .

Find(x): Returns the representative of the set containing x .

Union(x, y): Merge the sets containing x and y .

Rank:

Estimate of the “depth” of a tree in the Union-Find data
structure.

Helps decide which tree (or set) should become a subtree of
the other. The set with the lower rank is attached under the
set with the higher rank.

15 / 34



Union-Find Data Structure

Path Compression: Technique to make the Find operation
faster by flattening the structure of the tree.

During Find(x), we make each node on the path from x to
the root point directly to the root.

This reduces the depth of the tree, so subsequent Find
operations become faster.

Effect: Path Compression ensures that the tree remains flat,
which, combined with Union by Rank, leads to nearly constant
time complexity for both Union and Find.

16 / 34



Union-Find Data Structure

Union by Rank: Heuristic used in the Union operation to keep
the tree balanced.

Rank represents an estimate of the tree depth for each root.

When performing Union(x, y):

Find the roots of x and y, say rootX and rootY.
Attach the tree with the lower rank to the tree with the higher
rank.
If ranks are equal, make one root the parent of the other and
increase its rank by 1.

This approach keeps the trees as shallow as possible, making
future Find operations faster.

17 / 34



Union-Find Data Structure

Algorithm MakeSet(x)

1: Set parent(x)← x ▷ Set the pointer to point to itself
2: Set rank(x)← 0 ▷ Initialize the rank of x as 0
3: Return

18 / 34



Union-Find Data Structure

Algorithm Find(x)

1: if x ̸= parent(x) then
2: parent(x)← Find(parent(x)) ▷ Path compression
3: end if
4: Return parent(x)

19 / 34



Union-Find Data Structure

Algorithm Union(x, y)

1: rootX ← Find(x)
2: rootY ← Find(y)
3: if rootX ̸= rootY then
4: if rank(rootX ) > rank(rootY ) then
5: parent(rootY )← rootX
6: else if rank(rootX ) < rank(rootY ) then
7: parent(rootX )← rootY
8: else
9: parent(rootY )← rootX

10: rank(rootX )← rank(rootX ) + 1
11: end if
12: end if

20 / 34



Minimum Spanning Tree: Kruskal’s Algorithm

Algorithm Kruskal(G)

1: for each vertex n ∈ N do
2: MakeSet(n)
3: end for
4: Sort edges A in non-decreasing order by weight
5: T ← ∅
6: for each edge (u, v) ∈ A in sorted order do
7: if Find(u) ̸= Find(v) then
8: Union(u, v)
9: T ← T ∪ u, v

10: end if
11: end for
12: Return T ▷ T is the MST of G

21 / 34



Kruskal’s Algorithm: Time Complexity Analysis

Step 1: Sorting Edges

The first step in Kruskal’s Algorithm is to sort all edges by
weight.

Sorting a edges takes Θ(a log a).

Since n − 1 ≤ a ≤ n(n−1)
2 , this is approximately Θ(a log n).

Conclusion

Sorting contributes Θ(a log n) to the overall time complexity.

22 / 34



Kruskal’s Algorithm: Time Complexity Analysis

Step 2: Initializing Disjoint Sets

Each node in the graph is initially placed in its own set.

Using the Union-Find data structure, this initialization step
takes Θ(n) time.

Conclusion

Initializing disjoint sets contributes Θ(n) to the time complexity.

23 / 34



Kruskal’s Algorithm: Time Complexity Analysis

Step 3: Union-Find Operations

In the Union-Find data structure, Find and Union operations
can vary in time, but their average cost over multiple
operations is close to constant.

How do we say this mathematically?

We use the inverse Ackermann function α(n)

24 / 34



The Inverse Ackermann Function α(n)

The inverse Ackermann function, α(n), is a very slowly
growing function used in theoretical computer science.

It appears in the analysis of Union-Find with path compression
and union by rank.

α(n) grows so slowly that for any practical input size,
α(n) ≤ 5.

Relevance to Union-Find

With path compression and union by rank, the Find and Union

operations have an amortized complexity of O(α(n)), close to
constant for real-world applications.

Amortized Analysis: Helps us find the average time per operation
over a sequence of operations, rather than analyzing the worst-case
time for each individual operation.

25 / 34



Kruskal’s Algorithm: Time Complexity Analysis

Step 3: Union-Find Operations

The total time complexity for all Find and Union operations
is Θ(2a · α(2a, n)).
Here, α is the inverse Ackermann function, which grows very
slowly.

Conclusion

Union-Find operations contribute Θ(2a · α(2a, n)), which is very
efficient and close to O(a).

26 / 34



Kruskal’s Algorithm: Time Complexity Analysis

Remaining Operations

Additional operations (such as comparisons) contribute at
most Θ(a) to the total complexity.

This term is insignificant compared to the other terms in the
analysis.

Conclusion

The remaining operations do not affect the overall time complexity
significantly.

27 / 34



Kruskal’s Algorithm: Time Complexity Analysis

Overall Time Complexity

The total time complexity of Kruskal’s Algorithm is
dominated by the sorting and Union-Find steps.

Thus, the overall time complexity is:

Θ(a log n)

Since α(2a, n) is almost constant, it does not significantly
impact the complexity.

28 / 34



Kruskal’s Algorithm: Proof of Correctness

Promising Set:
A feasible set of edges is promising if it can be extended to
form an optimal solution.
The empty set is always promising, as an optimal solution
always exists.
If a promising set is already a solution, it must be optimal.

Edge Leaves a Set: An edge leaves a set of nodes if exactly
one end is in the set.

Lemma:
Let G = (N,A) be a connected undirected graph where the
length of each edge is given.
Let B ⊂ N be a strict subset of the nodes of G .
Let T ⊆ A be a promising set of edges such that no edge in T
leaves B.
Let v be the shortest edge that leaves B (or one of the
shortest if ties exist).
Then T ∪ {v} is promising.

29 / 34



Kruskal’s Algorithm: Proof of Correctness

Proof Outline (Induction on the Number of Edges in T ):

Basis:
The empty set is promising because G is connected, and a
solution must exist.

Induction Step:
Assume T is promising just before adding a new edge
e = {u, v}.
The edges in T divide G into two or more connected
components; u is in one component and v in another.
Let B be the set of nodes in the component containing u.

B is a strict subset of the nodes of G .
T is promising, with no edge in T leaving B.
e is one of the shortest edges leaving B, satisfying Lemma.

By Lemma, T ∪ {e} is also promising.

Conclusion:
When the algorithm stops, T is a solution and is promising,
hence optimal.

30 / 34



Minimum Spanning Tree: Prim’s Algorithm

Two main strategies for a greedy algorithm:

Kruskal: Start with an empty set T and select the shortest
edge that hasn’t been chosen or rejected, regardless of
position.

Prim: Choose a node and build a tree from there, selecting
the shortest available edge that extends the tree to a new
node.

31 / 34



Minimum Spanning Tree: Prim’s Algorithm

Algorithm Prim(G, length)

1: T ← ∅
2: Choose an arbitrary node u and initialize B = {u}
3: while B ̸= N do
4: Find the edge {u, v} of minimum length such that

u ∈ B and v ∈ N \ B
5: Add v to B and {u, v} to T
6: end while
7: Return T as the minimum spanning tree

32 / 34



Minimum Spanning Tree: Prim’s Algorithm

Example (same as Slide 13):

Step Edge {u, v} Considered B (Nodes in MST)

Initialization {1}
1 {1, 2} {1, 2}
2 {2, 3} {1, 2, 3}
3 {1, 4} {1, 2, 3, 4}
4 {4, 5} {1, 2, 3, 4, 5}
5 {4, 7} {1, 2, 3, 4, 5, 7}
6 {7, 6} {1, 2, 3, 4, 5, 6, 7}

Result: The MST includes edges
(1, 2), (2, 3), (1, 4), (4, 5), (4, 7), (7, 6).

33 / 34



Quick Assignment 5: Prim’s Algorithm: Proof of
Correctness

Proof Outline:

The proof is by mathematical induction on the number of
edges in the set T .

We shall show that if T is promising at any stage of the
algorithm, then it is still promising when an extra edge has
been added.

When the algorithm stops, T gives a solution to our problem;
since it is also promising, this solution is optimal.

Similar to how we proved correctness of Kruskal’s Algorithm.

34 / 34


