
CS 2500: Algorithms
Lecture 20: Greedy Algorithms: Huffman Coding and

Fractional Knapsack

Shubham Chatterjee

Missouri University of Science and Technology, Department of Computer Science

October 24, 2024

1 / 21

Fractional Knapsack Problem

We are given n objects and a knapsack (or bag).

Object i has a weight wi and the knapsack has a capacity m.

If a fraction xi , 0 ≤ xi ≤ 1, of object i is placed into the
knapsack, then a profit of pixi is earned.

The objective is to fill the knapsack to maximize the total
profit.

The total weight of chosen objects must not exceed the
knapsack capacity m.

2 / 21

Fractional Knapsack Problem

Objective:

Maximize
∑

1≤i≤n

pixi (1)

Subject to: ∑
1≤i≤n

wixi ≤ m (2)

0 ≤ xi ≤ 1, 1 ≤ i ≤ n (3)

Profits and weights are positive numbers.

A feasible solution is any set (x1, . . . , xn) satisfying the
constraints.

An optimal solution maximizes the total profit.

3 / 21

Greedy Strategies for the Fractional Knapsack Problem

The problem involves selecting a subset of objects and
fractions xi .

Greedy strategies:

Fill the knapsack starting with the object that provides the
highest profit pi .
Use the object with the lowest weight wi .
Consider the highest profit-to-weight ratio pi/wi .

Only the third strategy (highest pi/wi) produces an optimal
solution.

4 / 21

Fractional Knapsack Problem: Example 1

Consider the following instance:

n = 3,m = 20

Profits: (p1, p2, p3) = (25, 24, 15)

Weights: (w1,w2,w3) = (18, 15, 10)

x1, x2, x3
∑

wixi
∑

pixi Comments

1 (1/2, 1/3, 1/4) 16.5 24.25 Random
2 (1, 2/15, 0) 20 28.2 According to profit
3 (0, 2/3, 1) 20 31 By least weight
4 (0, 1, 1/2) 20 31.5 By profit-to-weight ratio

Table: Feasible Solutions

Solution 4 is optimal with a profit of 31.5.

5 / 21

Observations and Lemmas

Lemma 4.1: If the sum of all weights ≤ m, then xi = 1 for all i is
an optimal solution.

If weights fit within the capacity, choose all items fully.

Lemma 4.2: All optimal solutions will fill the knapsack exactly.

True because we can increase contributions of objects
fractionally until reaching full capacity.

6 / 21

Greedy Strategy: Adjusting for Maximum Profit

Each time an object is included, except possibly the last one,
we attempt to maximize profit by filling the knapsack.

If only a fraction of the last object is included, sometimes a
better increase can be obtained by using a different object.

Example:
Suppose there are 2 units of space left.
Two objects: (pi = 4,wi = 4) and (pj = 3,wj = 2).
Using j is better than using half of i .

This strategy ensures that at each step, the largest possible
increase in profit value is obtained.

7 / 21

Greedy Strategy: Adjusting for Maximum Profit

Object 1 has the largest profit p1 = 25.

It is placed into the knapsack first: x1 = 1, earning 25.

2 units of capacity remain.

Object 2 has the next highest profit p2 = 24, but w2 = 15
does not fit.

Using x2 = 2/15, we can fill the knapsack exactly.

The result is a total profit of 28.2, which is suboptimal.

The method described is termed a greedy approach, but it
does not always yield the optimal solution.

8 / 21

Other Greedy Approaches

Different strategies for selecting objects include:

Considering objects in order of nonincreasing profit values.
Considering objects in order of nondecreasing weights
(assumption: more items = more profit)

Both strategies can lead to suboptimal solutions as
demonstrated in previous examples.

Optimal solution strategy:

Balance the rate at which profit increases and the rate at
which capacity is used.
Choose objects ordered by the profit-to-weight ratio pi/wi .

Example 1 produces the optimal solution when using this
strategy.

9 / 21

Explanation of Profit-to-Weight Ratio Strategy

This strategy ensures that the objects with the maximum
profit per unit weight are included first.

Objects are sorted in descending order of pi/wi , ensuring that
at each step, the profit increase is maximized while using
capacity efficiently.

Note that solutions corresponding to this strategy can be
obtained using Algorithm GreedyKnapsack.

10 / 21

Why the Profit-to-Weight Strategy is Optimal

Choosing objects in order of pi/wi ensures that each unit of
capacity is used to maximize profit.

This is particularly effective when the knapsack must be filled
precisely, as it balances the rate of profit increase and capacity
consumption.

Disregarding the initial sort, the algorithm runs in O(n) time.

11 / 21

Greedy Knapsack Algorithm

Algorithm GreedyKnapsack(p,w,m)

1: Sort objects by pi/wi in descending order
2: profit ← 0, capacity ← m
3: for each object i in sorted order do
4: if wi ≤ capacity then
5: Take full object i
6: profit ← profit + pi
7: capacity ← capacity − wi

8: else
9: Take fraction of i to fill capacity

10: profit ← profit + pi · (capacity/wi)
11: capacity ← 0
12: break
13: end if
14: end for

12 / 21

Fractional Knapsack Problem: Example 2

Problem Statement:

There are three sugar bottles with their weights and profits as
shown.

The capacity of the bigger bottle (or knapsack) is 20 kg.

Apply a knapsack greedy algorithm and show the optimal
order of items.

Data:

Item Weight (kg) Profit ($)
1 14 24
2 18 20
3 10 16

Approach:

Calculate the profit-to-weight ratio (pi/wi) for each item.

Sort the items in descending order based on pi/wi .

Select items in this order, filling the knapsack until it is full.
13 / 21

Fractional Knapsack Problem: Example 2

Step-by-Step Process:

1 Profit-to-Weight Ratios:

24

14
= 1.71,

20

18
= 1.11,

16

10
= 1.6

2 Order of Items: 1, 3, 2
3 Load Items:

Load item 1 (14 kg, $24).
Remaining capacity: 20− 14 = 6 kg.
Load fraction of item 3, i.e., 6

10 = 0.6 of item 3.
Profit from item 3: 0.6× 16 = 9.6.

4 Total Profit:
24 + 9.6 = 33.6

14 / 21

Huffman Coding

Developed by David Huffman in 1951.

Variable-length code.

Frequently used in data compression to minimize the average
length of codes.

Efficiently assigns shorter codes to symbols with higher
frequencies and longer codes to those with lower frequencies.

Applications:

Data compression (e.g., ZIP files, MP3, JPEG).

Efficient communication encoding.

15 / 21

Huffman Coding

Data Compression:

Huffman coding is a method used for compressing data
efficiently.

Typical savings range from 20% to 90% depending on the
data characteristics.

Data arrives as a sequence of characters, and Huffman’s
algorithm builds an optimal way of representing each
character as a binary string.

Key Concept:

Frequent characters are assigned shorter codes.

Infrequent characters are given longer codes.

This approach minimizes the total number of bits required to
store the data.

16 / 21

Huffman Coding

Procedure:

1 Sort symbols by frequency.

2 Combine the two symbols with the lowest frequencies.

3 Assign a ’0’ to the left branch and ’1’ to the right branch.

4 Repeat until only one node remains, forming the Huffman
Tree.

Properties:

Prefix-free code: No code is a prefix of another.

Optimal for minimizing average code length.

17 / 21

Huffman Code: Example

18 / 21

Huffman Code: Priority Queue

What is a Priority Queue?

A priority queue is a data structure where each element has
a priority associated with it.

Elements are served based on their priority, not the order they
arrive.

Higher priority elements are processed before lower priority
ones.

Can be implemented using binary heaps.

Priority Queue in Huffman Coding: The priority queue is
used to store characters (or nodes) based on their frequencies.
Characters with lower frequencies are given higher priority, so
they are processed first when building the Huffman tree.

19 / 21

Huffman Code: Algorithm

Algorithm HuffmanCoding(frequencies)

1: Initialize a priority queue Q with all characters and their
frequencies

2: while Q has more than one node do
3: Extract two nodes x and y with the smallest frequen-

cies from Q
4: Create a new node z with frequency(z) =

frequency(x) + frequency(y)
5: Set x as the left child of z and y as the right child of

z
6: Insert z back into Q
7: end while
8: The remaining node in Q is the root of the Huffman Tree
9: Return the Huffman Tree

20 / 21

Huffman Codes: Complexity

Construction of the priority queue: O(n)

Extraction and merging operations: O(n log n)

Total Time Complexity: O(n log n)

21 / 21

