
Logistics
Algorithm Analysis

CS 2500: Algorithms
Lecture 2: Basics of Algorithm Analysis

Shubham Chatterjee

Missouri University of Science and Technology, Department of Computer Science

August 22, 2024

1 / 45

Logistics
Algorithm Analysis

Logistics

Recitations

Recitations are NOT mandatory.

BUT you are strongly encouraged to attend the recitations.

We have reserved a room 2 days a week for recitations.

Where: Toomey Hall 295
When: Every Wednesday and Thursday, 4 PM - 5 PM.

GTAs will hold the recitation sessions.

You will be given two types of homework assignments:
1 Weekly assignments (due every Tuesday).
2 Quick assignments (due the next day).

GTA will go over the quick assignments and help you work
through them.

No recitation today!

2 / 45

Logistics
Algorithm Analysis

Grading Information [Updated]

Longer (Weekly) Assignments. [40%]

Problems + coding (2-3 total).
Released every Tuesday.
Due at midnight next Tuesday.
Turnaround time: 7 days
No homework this week!

Quick Assignments. [10%]

2-3 (simple) problems based on material discussed in class that
day.
Released on the day of the class.
Due next day.
Turnaround time: 24 hours
No homework this week!

1 midterm examination. [25%]

1 final comprehensive examination. [25%]

3 / 45

Logistics
Algorithm Analysis

Logistics

Office Hours

Shubham Chatterjee (Instructor)
When: Tuesday and Thursday, 12.30 PM - 1.30 PM.
Where: Room 320, Computer Science Building

Other meetings by appointment.

4 / 45

Logistics
Algorithm Analysis

Logistics

My Contact

Email: shubham.chatterjee@mst.edu

Office: Room 320, Computer Science Building

Recommended Books

Algorithms Illuminated: Omnibus Edition. Tim
Roughgarden. Asked the library to reserve the book.

Fundamentals of Algorithmics. Gilles Brassard and Paul
Bratley.

Important

You are STRONGLY ENCOURAGED to read at least
one textbook.

5 / 45

Logistics
Algorithm Analysis

Counting in Algorithm Analysis

Many times, algorithm analysis is reduced to counting of steps or
operations. The following are some of the common summations
that are encountered in algorithm analysis:

n∑
k=0

c = cn

n∑
k=0

1 = n + 1

Some of the additional useful rules are as follows:

n∑
k=1

k = 1 + 2 + 3 + · · ·+ n =
n(n + 1)

2

6 / 45

Logistics
Algorithm Analysis

Counting in Algorithm Analysis

n∑
k=1

k2 = 12 + 22 + 32 + · · ·+ n2 =
n(n + 1)(2n + 1)

6

n∑
k=1

k3 = 13 + 23 + 33 + · · ·+ n3 =

(
n(n + 1)

2

)2

7 / 45

Logistics
Algorithm Analysis

Counting: Example

Question

Let us assume that the analysis of an algorithm yields f (n)
as follows:

f (n) =
n∑

i=1

6i(i + 1)

What is the estimate of the total number of operations?

8 / 45

Logistics
Algorithm Analysis

Counting: Example

Solution

The given equation can be written as:

f (n) =
n∑

i=1

6i2 +
n∑

i=1

6i

= 6× n(n + 1)(2n + 1)

6
+ 6× n(n + 1)

2
= n(n + 1)(2n + 1) + 3(n + 1)

= 2n3 + 6n2 + 4n

Therefore the time complexity function of the given
algorithm is: f (n) = 2n3 + 6n2 + 4n

9 / 45

Logistics
Algorithm Analysis

Counting Example: Linear Search

Remember the example about trying to find a book in a
library?

Question

Problem: Find the best, worst, and average case complexi-
ties for a linear search algorithm.

10 / 45

Logistics
Algorithm Analysis

Counting Example: Linear Search

Solution

Best Case: The element is the first item in the list. So
O(1).

Worst Case: The element is the last item or is not
present in the list. So O(n).

11 / 45

Logistics
Algorithm Analysis

Counting Example: Linear Search

Solution

Average Case. The average-case complexity for a linear
search problem can be derived as follows:

The item can be present anywhere in the list.

Probability of the item being in any position k is 1
n .

If the item is at position k, the number of comparisons
required is k.

The expected number of comparisons f (n) is given by:

f (n) =
1

n
× (1 + 2 + 3 + · · ·+ n) =

1

n
× n(n + 1)

2
=

n + 1

2

Conclusion: The average-case complexity is O(n).

12 / 45

Logistics
Algorithm Analysis

Rate of Growth

Question

Let A and B be two algorithms with the following complexity
functions:

fA = n2, fB = 40n + 1200

Which algorithm is better?

13 / 45

Logistics
Algorithm Analysis

Rate of Growth

Solution

To find the instance where fA = fB , solve the equation:

n2 = 40n + 1200

Rearranging gives us the quadratic equation:

n2 − 40n − 1200 = 0

Solving this using the quadratic formula:

n =
40±

√
1600 + 4800

2
=

40±
√
6400

2

n = 60 (since n > 0)

14 / 45

Logistics
Algorithm Analysis

Rate of Growth

Solution

Conclusion:

For n < 60, Algorithm A is better.

For n > 60, Algorithm B is better.

See the Visualization in Action:
Click Here to View the Animation

15 / 45

https://drive.google.com/file/d/16heztD8KV-TEDo-NiE4fo-wazgjz_S0r/view?usp=sharing

Logistics
Algorithm Analysis

Tractable vs. Intractable Problems

Tractable problems are those that generally have
polynomial-time complexity.

Intractable problems typically have exponential or worse time
complexities, making them impractical to solve within a
reasonable time for large input sizes.

16 / 45

Logistics
Algorithm Analysis

Tractable Problems: Polynomial-Time Algorithms

These algorithms have complexities like O(n), O(n2), O(n3),
etc.

Polynomial-time algorithms are generally considered efficient.

Problems that can be solved by such algorithms are known as
tractable problems.

Example: Sorting algorithms like Merge Sort, with complexity
O(n log n), are tractable.

17 / 45

Logistics
Algorithm Analysis

Intractable Problems: Exponential-Time Algorithms

These algorithms have complexities like O(2n), O(n!), etc.

Exponential-time algorithms are considered inefficient for large
input sizes.

Example: The Traveling Salesman Problem (TSP) is a classic
example of an intractable problem.

18 / 45

Logistics
Algorithm Analysis

Example: Exponential Growth

Consider the story of the chessboard and the grains of rice.

On the first square, place 1 grain.

On the second square, place 2 grains.

On the third square, place 4 grains.

Continue this pattern, doubling the grains on each subsequent
square.

Question: How many grains will be on the 64th square?

19 / 45

Logistics
Algorithm Analysis

Example: Exponential Growth

Grains on the 64th square:

The number of grains on the n-th square is given by 2n−1.

For the 64th square, the number of grains is 263.

Implication: The total number of grains on the chessboard
becomes astronomically large, illustrating how quickly exponential
growth can escalate.

20 / 45

Logistics
Algorithm Analysis

Consequences of Exponential Growth

Impact on Algorithms:

Exponential growth in time complexity means that even a
small increase in input size can result in a dramatic increase in
the computation time.

21 / 45

Logistics
Algorithm Analysis

Consequences of Exponential Growth

Impact on Algorithms:

Exponential growth in time complexity means that even a
small increase in input size can result in a dramatic increase in
the computation time.

Such algorithms may take years or even centuries to complete
for large input sizes.

Conclusion: Intractable problems are generally unsolvable in
practice due to their extreme computational requirements.

22 / 45

Logistics
Algorithm Analysis

Asymptotic Analysis

Asymptotic analysis is the theory of approximation.

Consider the Gauss summation:

n∑
i=1

i =
n(n + 1)

2

This is an exact formula, with a “closed-form” solution. In
real-world situations, finding an exact formula is often not possible.

Asymptotic analysis is very effective in algorithm analysis,
especially when it’s difficult to determine the exact time complexity
curve for large input sizes.

23 / 45

Logistics
Algorithm Analysis

Why Asymptotic Analysis?

Asymptotic analysis helps approximate the time complexity of
algorithms, especially for large input sizes.

It focuses on how input-dependent parameters affect the
algorithm’s performance.

This approach is essential when exact formulas are difficult or
impossible to obtain.

24 / 45

Logistics
Algorithm Analysis

Asymptotic Notation: Big-O

Upper bound or worst case time complexity of an algorithm.

Let f and g be functions from the integers or the real
numbers to the real numbers. The function f (n) is O(g(n)) if
there exist positive constants C and k such that:

|f (n)| ≤ C · |g(n)| for all n > k

25 / 45

Logistics
Algorithm Analysis

Big-O: Example 1

Question 1

Let f (n) = 3n3 for an algorithm. Prove that f (n) is in O(n3)

26 / 45

Logistics
Algorithm Analysis

Big-O: Example 1

Solution 1

Let g(n) = n3.

Choose C = 4 and k = 1.

For n > 1, 3n3 ≤ 4n3, so f (n) is O(n3).

27 / 45

Logistics
Algorithm Analysis

Example 1: Why Choose g(n) = n3?

Objective: Prove that f (n) = 3n3 is in O(n3).

Why g(n) = n3?

Form of the Function: f (n) = 3n3 is a cubic function, so
the most natural upper bound is also a cubic function.

Tight Bound:
Big-O notation aims to provide the tightest possible upper
bound on the growth of a function.
Choosing g(n) = n4 or n5 would still be correct but less
informative because it would not be the tightest bound.

28 / 45

Logistics
Algorithm Analysis

Example 1: Why Choose g(n) = n3?

Simplifying Comparison:
To show f (n) is in O(n3), we need to find a constant c such
that f (n) ≤ c · g(n) for sufficiently large n.
With g(n) = n3, the comparison becomes:

3n3 ≤ 3 · n3

This satisfies the Big-O condition easily with c = 3.

Conclusion: g(n) = n3 is the best choice because it provides the
most accurate and tightest upper bound for f (n) = 3n3.

29 / 45

Logistics
Algorithm Analysis

Big-O: Example 2

Question 2

Let f (n) = 3n3 + 2n2 + 3 for an algorithm. Prove that f (n)
is in O(n3)

30 / 45

Logistics
Algorithm Analysis

Example 2: Proving f (n) = 3n3 + 2n2 + 3 is O(n3)

Problem Statement:
Prove that f (n) = 3n3 +2n2 +3 belongs to the Big-O class O(n3).

Definition of Big-O:
f (n) is O(g(n)) if there exist positive constants c and k such that
for all n ≥ k:

f (n) ≤ c · g(n)

Target Function:

f (n) = 3n3 + 2n2 + 3

We need to show that f (n) ≤ c · n3 for some constant c .

31 / 45

Logistics
Algorithm Analysis

Example 2: The Key Step: Grouping Terms

Notice that the term with the highest degree of n dominates the
growth of the function as n becomes large.

In this case, n3 is the highest degree term. The other terms 2n2

and 3 grow much slower than n3.

To express f (n) in a form that makes it easier to compare to n3,
consider the following:

f (n) = 3n3 + 2n2 + 3

32 / 45

Logistics
Algorithm Analysis

Example 2: Comparing Each Term to n3

Each of these terms can be compared to n3:

3n3 is already a term of the same form as n3.

2n2 can be approximated by a term proportional to n3

because, for large n, n3 grows much faster than n2.

3 can be approximated by a term proportional to n3 because,
for large n, n3 dwarfs the constant term 3.

33 / 45

Logistics
Algorithm Analysis

Example 2: Expressing f (n) in Terms of n3

So, we can write:

f (n) = 3n3 + 2n2 + 3 ≤ 3n3 + 2n3 + 3n3

This simplifies to:

f (n) ≤ (3 + 2 + 3)n3 = 8n3

34 / 45

Logistics
Algorithm Analysis

Example 2: Conclusion

Since f (n) ≤ 8n3 for sufficiently large n, we can choose c = 8.

Therefore, f (n) = 3n3 + 2n2 + 3 is O(n3).

This demonstrates that the function’s growth is bounded above by
a constant multiple of n3, confirming that it belongs to the Big-O
class O(n3).

35 / 45

Logistics
Algorithm Analysis

Big-O: Example 3

Question 3

Let f (n) = 2n3+13log2n
7n2

for an algorithm. Prove that f (n) is
in O(n)

36 / 45

Logistics
Algorithm Analysis

Big-O: Example 3

Solution 3

It can be observed that log2n < n is always true. Therefore,
one can argue that that 13log2n ≤ 13n.

Since 13n ≤ 13n3 is always true, we can rewrite f (n) as:

f (n) ≤ 15n3

7n2
= 2n ∀n > 1

So f (n) = O(n) for c = 2. Hence proved.

37 / 45

Logistics
Algorithm Analysis

Asymptotic Notation: Big-Omega (Ω)

Big-Omega: Let f and g be functions from the integers or the
real numbers to the real numbers. The function f (n) is Ω(g(n)) if
there exist positive constants C and k such that:

f (n) ≥ C · g(n) for all n > k

38 / 45

Logistics
Algorithm Analysis

Ω: Example

Example

Let f (n) = 4n4 + 3n3 + 2n + 1 for an algorithm. Prove that
f (n) is in Ω(n)

39 / 45

Logistics
Algorithm Analysis

Ω Example: Understanding Ω Notation

Big-Omega Notation Ω(g(n)):

Provides a lower bound on the growth rate of a function.

Our goal: Find the Big-Omega notation for
f (n) = 4n4 + 3n3 + 2n + 1.

40 / 45

Logistics
Algorithm Analysis

Ω Example: Analyzing the Function
f (n) = 4n4 + 3n3 + 2n + 1

Breakdown of f (n):

4n4 is the term with the highest degree; it dominates as n
increases.

3n3 is the second-highest degree term.

2n grows linearly.

1 is a constant term.

See the Visualization in Action:
Click Here to View the Animation

41 / 45

https://drive.google.com/file/d/1OeO5m864LpQPzw0RHxQoXE5EXCUgM2fc/view?usp=sharing
https://drive.google.com/file/d/1OeO5m864LpQPzw0RHxQoXE5EXCUgM2fc/view?usp=sharing

Logistics
Algorithm Analysis

Ω Example: Why Not Choose g(n) = n?

Growth Comparison:

3n3 grows much faster than n.

If we choose g(n) = n, we would be stating that f (n) grows
at least as fast as n, which is true but not informative. This is
because n is much smaller compared to 3n3 and 4n4, so it
doesn’t provide a meaningful or tight lower bound for f (n).

42 / 45

Logistics
Algorithm Analysis

Ω Example: Why Not Choose g(n) = n?

Tightness of Bound:

A lower bound is more informative if it is as close as possible
to the function’s actual growth rate.

Choosing g(n) = n would be an overly loose bound, meaning
it doesn’t accurately reflect the growth behavior of f (n).

43 / 45

Logistics
Algorithm Analysis

Ω Example: Why Choose g(n) = n3?

Big-Omega Bound:

f (n) includes a 3n3 term.

f (n) must grow at least as fast as 3n3, meaning f (n) = Ω(n3).

Reasonable Tightness:

By choosing g(n) = n3, we establish a lower bound that is
close to the actual growth rate of the function, providing a
more precise and informative description of f (n)’s behaviour.

44 / 45

Logistics
Algorithm Analysis

Ω Example: Proving f (n) = Ω(n3)

Formal Proof:

f (n) = 4n4 + 3n3 + 2n + 1 ≥ 3n3

Conclusion:

For sufficiently large n, f (n) ≥ c · n3 where c = 3.

Therefore, f (n) = Ω(n3).

45 / 45

	Logistics
	Algorithm Analysis

