CS 2500: Algorithms

Lecture 19: Greedy Algorithms: Introduction and Scheduling
Problem

Shubham Chatterjee

Missouri University of Science and Technology, Department of Computer Science

October 22, 2024

Introduction to the Greedy Method

- The greedy method is a straightforward design technique.
- It is applied to optimization problems.
- Most problems have n inputs and require obtaining a subset that satisfies some constraints.
- Any subset that satisfies the constraints is called a feasible solution.
- A feasible solution that maximizes or minimizes a given objective function is called an **optimal solution**.

Introduction to the Greedy Method

What is an Optimization Problem? An optimization problem is associated with:

- An objective function called a value.
- A predicate *P* representing feasibility criteria.
- A solution space of all possible solutions U.
- An extremum (maximum or minimum) requirement.

Introduction to the Greedy Method

- Most problems have *n* inputs and require obtaining a subset that satisfies some constraints.
- Any subset that satisfies the constraints is called a feasible solution.
- A feasible solution that maximizes or minimizes a given objective function is called an **optimal solution**.

Greedy algorithms solve optimization problems exercising locally optimal decisions at every step that can lead to a globally optimum solution.

Greedy Strategy

- The greedy method involves making a sequence of decisions, considering one input at a time.
- At each step, a decision is made regarding whether an input is part of the optimal solution.
- Selection is based on the optimization measure.
- The method operates in stages, with each stage aiming to build towards an optimal solution.

Making Change Problem

Problem Statement:

- Given the following coins:
 - Dollars (100 cents), Quarters (25 cents), Dimes (10 cents),
 Nickels (5 cents), and Pennies (1 cent)
- Devise an algorithm to pay a given amount using the smallest possible number of coins.

Example:

- To pay 2.89(289 cents), the best solution is to give:
 - 2 Dollars, 3 Quarters, 1 Dime, and 4 Pennies (total: 10 coins)

Approach: Greedy Algorithm

Intuitive Solution:

- Use a **greedy algorithm** that starts with the largest denomination and works its way down.
- At each step, choose the largest coin that does not exceed the remaining amount.

Why Greedy?

- Simple and intuitive approach: We unconsciously use this method every day.
- Always takes the largest available coin that does not exceed the amount left.

Algorithm: Making Change

Algorithm MakeChange(n)

```
1: C \leftarrow \{100, 25, 10, 5, 1\} \triangleright Available coin denominations
 2: S \leftarrow \emptyset
                                         ▶ Initialize the solution set
                                > Sum of the coins in the solution
 3: s \leftarrow 0
 4: while s \neq n do
 5: x \leftarrow \text{Largest item in } C \text{ such that } s + x \leq n
 6: if x does not exist then
             return "no solution found"
 7:
 8: end if
 9: S \leftarrow S \cup \{x\} \triangleright \text{Add the selected coin to the solution}
10: s \leftarrow s + x

    □ Update the sum

11: end while
12: return S
```

Example Walkthrough: 2.89(289 cents)

- Start with 289 cents.
- ② Choose 2 Dollars (200 cents): Remaining 89 cents.
- Ochoose 3 Quarters (75 cents): Remaining 14 cents.
- Choose 1 Dime (10 cents): Remaining 4 cents.
- **6** Choose 4 Pennies (4 cents): Remaining 0 cents.

Total Coins Used: 2 Dollars, 3 Quarters, 1 Dime, 4 Pennies = 10 Coins

Characteristics of the Greedy Algorithm

Key Points:

- The algorithm always chooses the largest possible coin without exceeding the amount left.
- **Optimal Solution:** The greedy approach works when coins are multiples of each other (e.g., 25, 10, 5, 1).
- **Challenges:** With other coin systems, the greedy approach might fail to find the optimal solution.

Why "Greedy"?

- Never changes its decision once a coin is chosen.
- Always selects what appears to be the best immediate option.

Limitations and Considerations

When the Greedy Approach Might Fail:

- With a different set of coins, it might not produce an optimal solution.
- Example: If coins are 1, 3, and 4 cents, to make 6 cents:
 - Greedy: 4 + 1 + 1 (3 coins)
 - Optimal: 3 + 3 (2 coins)

Proof of Correctness:

- The greedy algorithm can be shown to be optimal for the given set of coins when we have an adequate supply of each denomination.
- Hard to prove formally, but intuitive for standard coins.

Greedy Problems in Daily Life

- Making coin change: Let's say a friend asks you to lend him 67 cents, assuming the available denominations of coins are 1, 5, 10, 25, 50. Would you give them 67 one-cent coins?
- **Finding the shortest path:** Find the shortest path between Rolla and St. Louis. The objective here is to find the shortest path to reduce the effort.
- Optimal loading of a suitcase with items of different weights: The objective is to maximize the number of items.
- The arrangement of items on a shelf: The objective is to maximize the number of items and optimize space.

Key Concepts

- Feasible Solution: A subset of inputs that meets the problem's constraints.
- Optimal Solution: A feasible solution that maximizes or minimizes the objective function.
- **Subset Paradigm**: The greedy method works by incrementally constructing a subset solution.
- Ordering Paradigm: An alternative, where inputs are processed based on a predefined order.

Greedy Algorithm: Control Abstraction

Algorithm Greedy(a, n)

```
1: solution \leftarrow \emptyset \triangleright Initialize the solution

2: for i = 1 to n do

3: x \leftarrow Select(a)

4: if Feasible(solution, x) then

5: solution \leftarrow Union(solution, x)

6: end if

7: end for

8: return solution
```

Explanation of Algorithm Components

- **Select**: Function that selects an input from a and removes it.
- **Feasible**: Boolean function that checks if *x* can be added to the *solution*.
- **Union**: Combines *x* with the current *solution* and updates the objective function.
- This abstraction helps in designing specific greedy algorithms based on different problems.

Subset Paradigm vs. Ordering Paradigm

Subset Paradigm:

- Focuses on constructing a subset that satisfies constraints.
- Decisions are made based on whether adding an element maintains feasibility.

Ordering Paradigm:

- Processes inputs based on a predetermined order.
- Optimizes using decisions already made.

Greedy Algorithms: Examples

- Subset Paradigm:
 - Job Scheduling Problem (with and without deadlines).
 - Practional Knapsack Problem
 - Minimum Cost Spanning Tree Problem (Prim's and Kruskal's Algorithms)
 - Tree Vertex Splitting Problem
 - Single Source Shortest Path Problem (Dijkstra's Algorithm)
- Ordering Paradigm:
 - Huffman Coding

Scheduling Problems

- In the shop, there is only one clerk.
- Various customers want to get the bills of the items they have purchased.
- The customers who have bought one item require less time for processing than those who bought a large number of items.
- The clerk feels that perhaps a little reordering of the queue might help satisfy all the customers. If so, what would be the best possible arrangement?

Job Scheduling Without Deadlines

Problem Statement:

- Given: A set S of n jobs.
- Each job $j \in S$ has an associated processing time $t_j > 0$.
- Objective: Minimize the total turnaround time, which is the sum of the waiting times plus the processing times for all jobs.

How do we solve this?

- An optimal solution involves sorting the jobs by their processing times in non-decreasing order, ensuring that shorter jobs are completed first, thereby reducing the total waiting time.
- This approach fits the principle of the shortest job first (SJF) scheduling.

- Consider three tasks with the following service times:
 - $t_1 = 2$ units
 - $t_2 = 7$ units
 - $t_3 = 4$ units
- Our goal is to find the optimal order of scheduling these jobs.

Turnaround Time Calculation

Order	Total Time in System	Average Time
t_1, t_2, t_3	2 + (2 + 7) + (2 + 7 + 4) = 24	24/3 = 8.00
t_1, t_3, t_2	2 + (2 + 4) + (2 + 4 + 7) = 21	21/3 = 7.00
t_2, t_1, t_3	7 + (7 + 2) + (7 + 2 + 4) = 29	$29/3 \approx 9.67$
t_2, t_3, t_1	7 + (7 + 4) + (7 + 4 + 2) = 31	$31/3 \approx 10.33$
t_3, t_1, t_2	4 + (4 + 2) + (4 + 2 + 7) = 23	$23/3 \approx 7.67$
t_3, t_2, t_1	4 + (4 + 7) + (4 + 7 + 2) = 28	$28/3 \approx 9.33$

Table: Turnaround Time Calculation for Different Schedules

- From the table, we can observe that the optimal order is t_1, t_3, t_2 .
- Scheduling jobs in ascending order of service time minimizes the average turnaround time.

Problem:

- Given jobs without deadlines, find the optimal scheduling order to minimize the total completion time.
- Use the Shortest Job First (SJF) strategy.

Jobs:

- $J_1 = 4$
- $J_2 = 5$
- $J_3 = 10$

Solution:

Sort jobs by processing time (Shortest Job First):

Optimal Order: J_1, J_2, J_3

- ② Calculate completion times:
 - $C(J_1) = 4$
 - $C(J_2) = 4 + 5 = 9$
 - $C(J_3) = 9 + 10 = 19$
- **3** Total Completion Time:

$$C = 4 + 9 + 19 = 32$$

Conclusion: The optimal scheduling order is J_1 , J_2 , J_3 , with a total completion time of **32**.

Job Scheduling Without Deadlines

Greedy Approach for SJF:

- Sort the jobs by service time in a non-decreasing order.
- Select the next job from the sorted list and include it in the solution set.
- Continue until all jobs are scheduled.

Job Scheduling Without Deadlines

Algorithm SJFSchedule(J)

- 1: $S \leftarrow$ sorted array of jobs in J based on service time
- 2: $i \leftarrow 1$
- 3: solution $\leftarrow \emptyset$
- 4: while $i \leq n$ do
- 5: Select the next job i from S
- 6: $solution \leftarrow solution \cup job i$
- 7: $i \leftarrow i + 1$
- 8: end while
- 9: return solution

Time Complexity:

- Core part: Sorting (Needs $O(n \log n)$ time).
- All remaining tasks: O(n) time.
- Result: $O(n \log n)$

Job Scheduling with Deadlines

- Given a set of *n* jobs, each job *i* has:
 - A deadline $d_i \geq 0$
 - A profit $p_i > 0$
- Profit p_i is earned only if the job is completed by its deadline.
- The goal is to find a subset of jobs that maximizes the total profit.
- Only one machine is available to process the jobs, and each job takes one unit of time.
- A feasible solution for this problem is a subset J of jobs such that each job in this subset can be completed by its deadline.
- The value of a feasible solution J is the sum of the profits of the jobs in J or ∑_{i∈J} p_i.
- An optimal solution is a feasible solution with maximum value.
- This problem fits the subset paradigm because the solution involves selecting a subset of jobs.

- Number of jobs: n = 4
- Profits: $(p_1, p_2, p_3, p_4) = (100, 10, 15, 27)$
- Deadlines: $(d_1, d_2, d_3, d_4) = (2, 1, 2, 1)$
- Goal: Maximize the profit while completing each job before its deadline.

Feasible Solutions and Their Value

Feasible Solution	Processing Sequence	Total Profit
(1, 2)	2,1	110
(1,3)	1, 3 or 3, 1	115
(1, 4)	4,1	127
(2,3)	2,3	25
(3,4)	4,3	42
(1)	1	100
(2)	2	10
(3)	3	15
(4)	4	27

Table: Feasible Solutions and Their Total Profit

- Solution (1,4) is optimal with a total profit of 127.
- Jobs 1 and 4 must be processed in the order: Job 4 first, followed by Job 1.

Greedy Approach:

- To formulate a greedy algorithm, we need an optimization measure.
- Choose jobs in non-increasing order of profits p_i .
- Ensure that each selected job can be scheduled before its deadline.
- Objective: Maximize $\sum_{i \in J} p_i$, where J is the set of selected jobs.

Greedy Algorithm Explanation

- Start with an empty set $J = \emptyset$.
- Add Job 1 (with the highest profit) to J: $J = \{1\}$.
- Next, consider Job 4. Adding Job 4 results in a feasible solution: $J = \{1, 4\}$.
- Consider Job 3. Adding Job 3 makes $J = \{1, 3, 4\}$, which is not feasible, so discard it.
- Consider Job 2. Adding Job 2 makes $J = \{1, 2, 4\}$, which is not feasible, so discard it.
- Final solution: $J = \{1, 4\}$, with a total profit of 127.

Why is $J = \{1, 3, 4\}$ Not Feasible?

- Job 1 must be completed by the end of time unit 2.
- Job 3 must also be completed by the end of time unit 2.
- Job 4 must be completed by the end of time unit 1.
- When scheduling $J = \{1, 3, 4\}$:
 - If Job 4 is scheduled first (deadline = 1), it occupies time unit
 1.
 - Jobs 1 and 3 both need to finish by time unit 2.
 - Only one time unit (time unit 2) is left, but two jobs (1 and 3) need to be completed.
- Therefore, it is impossible to finish both Jobs 1 and 3 within their deadlines.

Job Scheduling with Deadlines

Algorithm GreedyJob(d, J, n)

```
    J ← 1
    i ← 1
    while i ≤ n do
    if (all jobs in J∪{i} can be completed by their deadlines) then
    J ← J ∪ {i};
    end if
    i ← i + 1
    end while
```

Problem:

- Given jobs with deadlines and profits, schedule them to maximize profit.
- Each job takes 1 unit of time, and no two jobs can be scheduled simultaneously.

Jobs:

Job	Deadline	Profit
1	2	60
2	1	30
3	2	40
4	1	80

Solution:

Sort jobs by profit in descending order:

Jobs:
$$(4,1,3,2)$$

- ② The maximum deadline here is 2, so we have two slots: [empty, empty]
- Place jobs:
 - Job 4 (Deadline 1, Profit 80) \rightarrow Slot 1: [4, empty]
 - Job 1 (Deadline 2, Profit 60) \rightarrow Slot 2: [4, 1]
 - Job 3 (Deadline 2, Profit 40) → Cannot be scheduled
 - Job 2 (Deadline 1, Profit 30) \rightarrow Cannot be scheduled
- Scheduled Jobs: Job 4 and Job 1
- **5** Total Profit: 80 + 60 = 140

Conclusion: The maximum profit is **140**.