CS 2500: Algorithms

Lecture 18: Divide-and-Conquer: QuickSelect and Strassen's
Matrix Multiplication

Shubham Chatterjee

Missouri University of Science and Technology, Department of Computer Science

October 17, 2024

1/30

Selecting the k-th Smallest Element

@ The goal of the QuickSelect algorithm is to find the k-th
smallest element in an array.
@ It uses the Partition function, similar to Quick sort:
e Partitions the array into elements smaller than or equal to the
pivot and elements greater than the pivot.
e Depending on the pivot's position, the algorithm decides
whether to search the left or right part.

2/30

Selecting the k-th Smallest Element

Algorithm QuickSelect(a, n, k)

1 low<+ 1, up<n+1

2: a[n+1] « o0 > Set the sentinel value
3: repeat

4: j <« Partition(a, low, up)

5 if kK =/ then

6: return > k-th smallest element is found
T else if kK < then

8 up < j > Search in the left part
9 else
10: low <~ j+1 > Search in the right part
11: end if
12: until false

3/30

Example: QuickSelect

e Array: a = [65,70,75,80,85,60,55,50,45]
e Goal: Find the 7th smallest element (k = 7).

@ The algorithm repeatedly calls Partition to rearrange the
array until it finds the 7th smallest element.

4/30

Step 1: First Partition Call

Partition(1, 9)
@ Pivot element: 65

@ After partitioning, the array becomes:
a = [45,55,50, 60, 65, 80, 85, 75, 70]

@ Pivot 65 is placed at position 5.

@ Since k =7 and 7 > 5, the 7th smallest element must be in
the right half.

e Next call: Partition(6, 10)

5/30

Step 2: Second Partition Call

Partition(6, 10)
@ Subarray to partition: a[6 : 10] = [80, 85, 75, 70, 0]
@ Pivot element: 80

o After partitioning, the array becomes:

a[6 : 10] = [70, 75,80, 85, o]

Pivot 80 is placed at position 8.

Since k =7 and 7 < 8, search continues in the left part.
Next call: Partition(7, 8)

6/30

Step 3: Third Partition Call

Partition(7, 8)
@ Subarray to partition: a[7 : 8] = [75, 70]
@ Pivot element: 75

@ After partitioning, the array becomes:
a7 : 8] = [70,75]

@ Pivot 75 is placed at position 8.
@ The 7th smallest element is found at position 7: a[7] = 70.

7/30

Summary of Execution

o Initial Array:
[65, 70,75, 80, 85,60, 55, 50, 45]
o After 1st Partition:
[45, 55,50, 60, 65, 80, 85, 75, 70]
o After 2nd Partition:
[70,75, 80, 85, o]

o After 3rd Partition:
[70,75]

The 7th smallest element is 70.

8/30

Time Complexity Analysis of QuickSelect

o The worst-case time complexity is O(n?).

@ In the worst case, the partitioning process might reduce the
search space by only one element at each step.

@ Average-case time complexity is O(n).

9/30

Partition Function and Assumptions

@ The Partition function is based on:
o All elements in the input are distinct.
e The partitioning element has an equal probability of being any
element.
@ The time for each partition call is O(p — m), where p and m
are the current boundaries.
@ On each call:
o Either the lower bound increases by at least one.
e Or the upper bound decreases by at least one.

@ At most n partition calls are made.

10/30

Introduction to Matrix Multiplication

@ Given two matrices A and B of size n X n, the product
C = A x B is also an n X n matrix.

@ Each element of C is calculated as:

ZA B(k,J)

@ This conventional algorithm takes ©(n3) time due to the
three nested loops.

11/30

Divide-and-Conquer Strategy

Matrix Multiplication using Submatrices

@ Assume that n is a power of 2. If not, pad the matrices with
zeros to the nearest power of 2.

@ Split each matrix into four equal-sized submatrices of size

3 X 5t
A11 A12 Bll Bl2
A — 5 B =
[A21 Azz] [521 322}

12/30

Divide-and-Conquer Strategy

Matrix Multiplication using Submatrices

@ The product matrix C can be expressed as:

G G2
C=AxB=
8 [C21 sz]

@ Each element is calculated as:
C11 = A11B11 + A1 By

C12 = A11B12 + A12B»
(o1 = A21Bi1 + AxBo
Co = A21Bi1s + A B

13/30

Divide-and-Conquer Strategy

Matrix Multiplication using Submatrices
@ Multiplication using submatrices requires:
o 8 multiplications of 5 x 5 matrices.
o 4 additions of 5 x 7 matrices.
@ Since two 5 X 7 matrices can be added in time cn® for some
constant c, the overall computing time T(n) for the resulting

divide-and-conquer algorithm is:

b ifn<?2
T(n): n 2
8T(§)+cn if n>2

where b and c are constants.
e Solving this recurrence gives as T(n) = O(n?).

@ No improvement over the conventional method.

14 /30

Strassen's Algorithm

Key Ildea
@ Matrix multiplications are more expensive than matrix
additions (O(n3) vs O(n?)). Thus, try to reformulate the
equations for Cj; so that we have fewer multiplications.
@ Strassen's algorithm introduces 7 matrix multiplications
instead of the usual 8.
@ Define the following intermediate matrices:

P = (A11 + A2)(B11 + B22)
Q = (A2 + A2)B11
R = A11(B12 — Bx)
S = Ax(Bo1 — B11)
T = (A1 + A12) B
U = (A21 — A11)(Bi1 + Br2)
V = (A2 — A22)(B21 + Bx)

15/30

Strassen's Algorithm

Computing the Submatrices of C

@ Using the intermediate matrices, the submatrices of C are
computed as:
Ci=P+S-T+V

Co=R+T
C1=Q+S
Co=P+R-Q+U

16 /30

Strassen's Algorithm

Recurrence Relation for Time Complexity

@ The recurrence relation for the time complexity of Strassen's
algorithm is:

b if n<2
T(n): n 2
7T(§)+an if n>?2

@ Solving this recurrence relation gives:
T(n) =0 (n®7) ~ O(n®)
@ Strassen’s algorithm improves the time complexity over the

conventional O(n%) approach.

17/30

@ Strassen’s algorithm is a faster way to multiply matrices by
reducing the number of multiplications.

e It achieves a time complexity of O(n%81).

@ However, the algorithm introduces more additions and
subtractions, which can affect performance for smaller
matrices.

@ In practice, Strassen’s algorithm is most effective for large
matrices where multiplication dominates the computation.

18/30

Weekly3: Median of Two Sorted Arrays

Problem Statement
@ Given two sorted arrays, nums1 and nums2.
@ The goal is to find the median of the combined array without
explicitly merging them.
@ Challenge: Achieve an efficient solution in O(log(min(m, n)))
time.

19/30

Weekly3: Median of Two Sorted Arrays

Key Idea: Binary Search for Partitioning
@ Instead of merging the arrays, use binary search to find the
correct partition.
@ The partition ensures:

o The left part contains the smaller half of elements.
e The right part contains the larger half of elements.

@ Once partitioned correctly, the median is computed based on
elements around the partition.

20/30

Weekly3: Median of Two Sorted Arrays

Step 1: Search on the Smaller Array

@ Let m be the length of the smaller array (nums1) and n the
length of the larger array (nums2).

o If nums1 is larger, swap them to always search on the smaller
array.

@ This ensures the algorithm runs in O(log(min(m, n))) time.

21/30

Weekly3: Median of Two Sorted Arrays

Step 2: Binary Search Setup
@ Define the search space on nums1:

e Let i be the partition in nums1.
o Let j = MEIEL _ i be the partition in nums2.

@ This divides both arrays into two parts:

o Left part: nums1[0..i-1] and nums2[0..j-1]
e Right part: nums1[i..m-1] and nums2[j..n-1]

22/30

Weekly3: Median of Two Sorted Arrays

Step 3: Adjusting the Partition
@ The partition is valid if:

max(numsl[i — 1], nums2[j — 1]) < min(numsl[i], nums2[j])

@ If the partition is not valid:

o If numsl1[i] < nums2[j — 1], increase i (move partition right).
o If numsl[i — 1] > nums2][j], decrease i (move partition left).

23/30

Weekly3: Median of Two Sorted Arrays

Step 4: Calculating the Median
@ Once a valid partition is found:
o If the total number of elements is odd:

Median = max(numsl1[i — 1], nums2[j — 1])

o If the total number of elements is even:

max(numsl[i — 1], nums2[j — 1]) + min(nums1[i], nums2[;]

Median =
edian 5

24/30

Median of Two Sorted Arrays: Example

e Given:
numsl = [1,3,4,5,7], nums2 =[2,6,8]

@ Goal: Find the median of the two arrays without merging
them.

o ldea:Perform binary search on the smaller array to efficiently
partition the two arrays.

25/30

Median of Two Sorted Arrays: Example

Step 1: Identify the Smaller Array

@ Since nums2 is smaller, we swap the arrays.
o Now:

e numsl = [2, 6, 8]
e nums2 = [1, 3, 4, 5, 7]

@ Perform binary search on nums1 (the smaller array).

26/30

Median of Two Sorted Arrays: Example

Step 2: Binary Search Setup
o Total elements: m+ n = 8.
@ Half the total length:

m+n+1_
— =

half_len = 4

@ Perform binary search on nums1 to find the correct partition.

27/30

Median of Two Sorted Arrays: Example

Step 3: First Partition Call
@ Seti=1,j=3.
@ Partition the arrays:

o Left part: nums1[0:1] = [2], nums2[0:3] = [1, 3, 4]
e Right part: nums1[1:3] = [6, 8], nums2[3:5] = [5, 7]

28/30

Median of Two Sorted Arrays: Example

Step 4: Check Partition Validity

e Compute:
max(numsl[i — 1], nums2[j — 1]) = max(2,4) = 4

min(nums1[i], nums2[j]) = min(6,5) = 5

@ Since 4 <5, the partition is valid.

29/30

Median of Two Sorted Arrays: Example

Step 5: Calculate the Median

@ Total number of elements is even, so:

max(2,4) + min(6,5) 4+5

Median =
edian > >

4.5

30/30

