
CS 2500: Algorithms
Lecture 18: Divide-and-Conquer: QuickSelect and Strassen’s

Matrix Multiplication

Shubham Chatterjee

Missouri University of Science and Technology, Department of Computer Science

October 17, 2024

1 / 30



Selecting the k-th Smallest Element

The goal of the QuickSelect algorithm is to find the k-th
smallest element in an array.

It uses the Partition function, similar to Quick sort:

Partitions the array into elements smaller than or equal to the
pivot and elements greater than the pivot.
Depending on the pivot’s position, the algorithm decides
whether to search the left or right part.

2 / 30



Selecting the k-th Smallest Element

Algorithm QuickSelect(a, n, k)

1: low ← 1, up ← n + 1
2: a[n + 1]←∞ ▷ Set the sentinel value
3: repeat
4: j ← Partition(a, low , up)
5: if k = j then
6: return ▷ k-th smallest element is found
7: else if k < j then
8: up ← j ▷ Search in the left part
9: else

10: low ← j + 1 ▷ Search in the right part
11: end if
12: until false

3 / 30



Example: QuickSelect

Array: a = [65, 70, 75, 80, 85, 60, 55, 50, 45]

Goal: Find the 7th smallest element (k = 7).

The algorithm repeatedly calls Partition to rearrange the
array until it finds the 7th smallest element.

4 / 30



Step 1: First Partition Call

Partition(1, 9)

Pivot element: 65

After partitioning, the array becomes:

a = [45, 55, 50, 60, 65, 80, 85, 75, 70]

Pivot 65 is placed at position 5.

Since k = 7 and 7 > 5, the 7th smallest element must be in
the right half.

Next call: Partition(6, 10)

5 / 30



Step 2: Second Partition Call

Partition(6, 10)

Subarray to partition: a[6 : 10] = [80, 85, 75, 70,∞]

Pivot element: 80

After partitioning, the array becomes:

a[6 : 10] = [70, 75, 80, 85,∞]

Pivot 80 is placed at position 8.

Since k = 7 and 7 < 8, search continues in the left part.

Next call: Partition(7, 8)

6 / 30



Step 3: Third Partition Call

Partition(7, 8)

Subarray to partition: a[7 : 8] = [75, 70]

Pivot element: 75

After partitioning, the array becomes:

a[7 : 8] = [70, 75]

Pivot 75 is placed at position 8.

The 7th smallest element is found at position 7: a[7] = 70.

7 / 30



Summary of Execution

Initial Array:

[65, 70, 75, 80, 85, 60, 55, 50, 45]

After 1st Partition:

[45, 55, 50, 60, 65, 80, 85, 75, 70]

After 2nd Partition:

[70, 75, 80, 85,∞]

After 3rd Partition:
[70, 75]

The 7th smallest element is 70.

8 / 30



Time Complexity Analysis of QuickSelect

The worst-case time complexity is O(n2).

In the worst case, the partitioning process might reduce the
search space by only one element at each step.

Average-case time complexity is O(n).

9 / 30



Partition Function and Assumptions

The Partition function is based on:

All elements in the input are distinct.
The partitioning element has an equal probability of being any
element.

The time for each partition call is O(p −m), where p and m
are the current boundaries.

On each call:

Either the lower bound increases by at least one.
Or the upper bound decreases by at least one.

At most n partition calls are made.

10 / 30



Introduction to Matrix Multiplication

Given two matrices A and B of size n × n, the product
C = A× B is also an n × n matrix.

Each element of C is calculated as:

C (i , j) =
n∑

k=1

A(i , k) · B(k , j)

This conventional algorithm takes Θ(n3) time due to the
three nested loops.

11 / 30



Divide-and-Conquer Strategy

Matrix Multiplication using Submatrices

Assume that n is a power of 2. If not, pad the matrices with
zeros to the nearest power of 2.

Split each matrix into four equal-sized submatrices of size
n
2 ×

n
2 :

A =

[
A11 A12

A21 A22

]
, B =

[
B11 B12

B21 B22

]

12 / 30



Divide-and-Conquer Strategy

Matrix Multiplication using Submatrices

The product matrix C can be expressed as:

C = A× B =

[
C11 C12

C21 C22

]
Each element is calculated as:

C11 = A11B11 + A12B21

C12 = A11B12 + A12B22

C21 = A21B11 + A22B21

C22 = A21B12 + A22B22

13 / 30



Divide-and-Conquer Strategy

Matrix Multiplication using Submatrices

Multiplication using submatrices requires:

8 multiplications of n
2 ×

n
2 matrices.

4 additions of n
2 ×

n
2 matrices.

Since two n
2 ×

n
2 matrices can be added in time cn2 for some

constant c , the overall computing time T (n) for the resulting
divide-and-conquer algorithm is:

T (n) =

{
b if n ≤ 2

8T
(
n
2

)
+ cn2 if n > 2

where b and c are constants.

Solving this recurrence gives as T (n) = O(n3).

No improvement over the conventional method.

14 / 30



Strassen’s Algorithm

Key Idea

Matrix multiplications are more expensive than matrix
additions (O(n3) vs O(n2)). Thus, try to reformulate the
equations for Cij so that we have fewer multiplications.

Strassen’s algorithm introduces 7 matrix multiplications
instead of the usual 8.

Define the following intermediate matrices:

P = (A11 + A22)(B11 + B22)

Q = (A21 + A22)B11

R = A11(B12 − B22)

S = A22(B21 − B11)

T = (A11 + A12)B22

U = (A21 − A11)(B11 + B12)

V = (A12 − A22)(B21 + B22)

15 / 30



Strassen’s Algorithm

Computing the Submatrices of C

Using the intermediate matrices, the submatrices of C are
computed as:

C11 = P + S − T + V

C12 = R + T

C21 = Q + S

C22 = P + R − Q + U

16 / 30



Strassen’s Algorithm

Recurrence Relation for Time Complexity

The recurrence relation for the time complexity of Strassen’s
algorithm is:

T (n) =

{
b if n ≤ 2

7T
(
n
2

)
+ an2 if n > 2

Solving this recurrence relation gives:

T (n) = O
(
nlog2 7

)
≈ O(n2.81)

Strassen’s algorithm improves the time complexity over the
conventional O(n3) approach.

17 / 30



Summary

Strassen’s algorithm is a faster way to multiply matrices by
reducing the number of multiplications.

It achieves a time complexity of O(n2.81).

However, the algorithm introduces more additions and
subtractions, which can affect performance for smaller
matrices.

In practice, Strassen’s algorithm is most effective for large
matrices where multiplication dominates the computation.

18 / 30



Weekly3: Median of Two Sorted Arrays

Problem Statement

Given two sorted arrays, nums1 and nums2.

The goal is to find the median of the combined array without
explicitly merging them.

Challenge: Achieve an efficient solution in O(log(min(m, n)))
time.

19 / 30



Weekly3: Median of Two Sorted Arrays

Key Idea: Binary Search for Partitioning

Instead of merging the arrays, use binary search to find the
correct partition.

The partition ensures:

The left part contains the smaller half of elements.
The right part contains the larger half of elements.

Once partitioned correctly, the median is computed based on
elements around the partition.

20 / 30



Weekly3: Median of Two Sorted Arrays

Step 1: Search on the Smaller Array

Let m be the length of the smaller array (nums1) and n the
length of the larger array (nums2).

If nums1 is larger, swap them to always search on the smaller
array.

This ensures the algorithm runs in O(log(min(m, n))) time.

21 / 30



Weekly3: Median of Two Sorted Arrays

Step 2: Binary Search Setup

Define the search space on nums1:

Let i be the partition in nums1.
Let j = m+n+1

2 − i be the partition in nums2.

This divides both arrays into two parts:

Left part: nums1[0..i-1] and nums2[0..j-1]

Right part: nums1[i..m-1] and nums2[j..n-1]

22 / 30



Weekly3: Median of Two Sorted Arrays

Step 3: Adjusting the Partition

The partition is valid if:

max(nums1[i − 1], nums2[j − 1]) ≤ min(nums1[i ], nums2[j ])

If the partition is not valid:

If nums1[i ] < nums2[j − 1], increase i (move partition right).
If nums1[i − 1] > nums2[j ], decrease i (move partition left).

23 / 30



Weekly3: Median of Two Sorted Arrays

Step 4: Calculating the Median

Once a valid partition is found:

If the total number of elements is odd:

Median = max(nums1[i − 1], nums2[j − 1])

If the total number of elements is even:

Median =
max(nums1[i − 1], nums2[j − 1]) + min(nums1[i ], nums2[j ])

2

24 / 30



Median of Two Sorted Arrays: Example

Given:

nums1 = [1, 3, 4, 5, 7], nums2 = [2, 6, 8]

Goal: Find the median of the two arrays without merging
them.

Idea:Perform binary search on the smaller array to efficiently
partition the two arrays.

25 / 30



Median of Two Sorted Arrays: Example

Step 1: Identify the Smaller Array

Since nums2 is smaller, we swap the arrays.

Now:

nums1 = [2, 6, 8]

nums2 = [1, 3, 4, 5, 7]

Perform binary search on nums1 (the smaller array).

26 / 30



Median of Two Sorted Arrays: Example

Step 2: Binary Search Setup

Total elements: m + n = 8.

Half the total length:

half len =
m + n + 1

2
= 4

Perform binary search on nums1 to find the correct partition.

27 / 30



Median of Two Sorted Arrays: Example

Step 3: First Partition Call

Set i = 1, j = 3.

Partition the arrays:

Left part: nums1[0:1] = [2], nums2[0:3] = [1, 3, 4]

Right part: nums1[1:3] = [6, 8], nums2[3:5] = [5, 7]

28 / 30



Median of Two Sorted Arrays: Example

Step 4: Check Partition Validity

Compute:

max(nums1[i − 1], nums2[j − 1]) = max(2, 4) = 4

min(nums1[i ], nums2[j ]) = min(6, 5) = 5

Since 4 ≤ 5, the partition is valid.

29 / 30



Median of Two Sorted Arrays: Example

Step 5: Calculate the Median

Total number of elements is even, so:

Median =
max(2, 4) + min(6, 5)

2
=

4 + 5

2
= 4.5

30 / 30


