
CS 2500: Algorithms
Lecture 17: Divide-and-Conquer: Median and Order Statistics

Shubham Chatterjee

Missouri University of Science and Technology, Department of Computer Science

October 15, 2024

1 / 20



Order Statistics: Definition

The i-th order statistic of a set of n elements is the i-th
smallest element.

Examples:
The minimum of a set is the first order statistic (i = 1).
The maximum of a set is the n-th order statistic (i = n).

A median is the “halfway point” of the set:

If n is odd, the median occurs at i = n+1
2 .

If n is even, two medians exist:

Lower median: i = n
2

Upper median: i = n
2
+ 1

2 / 20



Order Statistics: Median Simplification

For simplicity, we refer to the lower median as the median.

Medians occur at:

i =

⌊
n + 1

2

⌋
and i =

⌈
n + 1

2

⌉

3 / 20



The Selection Problem: Definition

Goal: Select the i-th order statistic from a set of n distinct
numbers.

Input:
A set A of n distinct numbers.
An integer i , where 1 ≤ i ≤ n.

Output: The element x ∈ A that is larger than exactly i − 1
other elements of A.

4 / 20



Naive Solution to the Selection Problem

Sort the set A using Heapsort or Merge Sort in O(n log n)
time.

Output the i-th element from the sorted array.

Drawback: Sorting requires O(n log n) time, but we can solve
the selection problem asymptotically faster.

5 / 20



Selecting the Minimum and Maximum

This problem involves finding both the maximum and
minimum elements in a set of n elements.

We use a divide-and-conquer approach to solve this problem
efficiently.

The main focus is on the number of element comparisons,
since:

The frequency of other operations is similar to element
comparisons.
Comparisons dominate when elements are complex (e.g., large
numbers, strings).

6 / 20



Selecting the Minimum and Maximum: Straightforward
Approach

StraightMaxMin(a, n, max, min)

1: max ← a[1]
2: min← a[1]
3: for i ← 2 to n do
4: if a[i ] > max then
5: max ← a[i ]
6: end if
7: if a[i ] < min then
8: min← a[i ]
9: end if

10: end for

7 / 20



Time Complexity Analysis

Best case: Elements in increasing order, requiring n − 1
comparisons.

Worst case: Elements in decreasing order, requiring 2(n − 1)
comparisons.

Average case: < 2(n − 1) comparisons.

8 / 20



Selecting the Minimum and Maximum:
Divide-and-Conquer Approach

We use a divide-and-conquer strategy:
Divide the list into smaller sublists.
Recursively solve for each sublist.
Combine the results to get the final solution.

9 / 20



Selecting the Minimum and Maximum:
Divide-and-Conquer Approach

Base Case: Small Inputs

If the list has one element (n = 1):

Both the maximum and minimum are that single element.

If the list has two elements (n = 2):

One comparison is needed to find the max and min.

10 / 20



Selecting the Minimum and Maximum:
Divide-and-Conquer Approach

Divide Step: Partitioning the List

If the list has more than two elements, divide it into two parts:

P1 =
(
a[1], . . . , a

[n
2

])
and P2 =

(
a
[n
2
+ 1

]
, . . . , a[n]

)
Recursively apply the divide-and-conquer algorithm to both
parts.

11 / 20



Selecting the Minimum and Maximum:
Divide-and-Conquer Approach

Conquer Step: Combining Results

After finding the maximum and minimum for P1 and P2:

MAX(P) is the larger of:

max (MAX(P1),MAX(P2))

MIN(P) is the smaller of:

min (MIN(P1),MIN(P2))

The final max and min are determined from the two sublists.

12 / 20



Selecting the Minimum and Maximum:
Divide-and-Conquer Approach

13 / 20



Selecting the Minimum and Maximum:
Divide-and-Conquer Approach

Example: Show how the divide-and-conquer approach MaxMin

works for the following set of number:

14 / 20



Selecting the Minimum and Maximum:
Divide-and-Conquer Approach

Example: Show how the divide-and-conquer approach MaxMin

works for the following set of number:

15 / 20



Selecting the Minimum and Maximum:
Divide-and-Conquer Approach

Recurrence Relation for MaxMin

The number of element comparisons required by the MaxMin
algorithm follows the recurrence relation:

T (n) =


T
(⌈

n
2

⌉)
+ T

(⌊
n
2

⌋)
+ 2 if n > 2

1 if n = 2

0 if n = 1

16 / 20



Selecting the Minimum and Maximum:
Divide-and-Conquer Approach

Solving the recurrence

Assume n = 2k for some positive integer k.
Expanding the recurrence relation step by step:

T (n) = 2T
(n
2

)
+ 2

= 2
(
2T

(n
4

)
+ 2

)
+ 2 = 4T

(n
4

)
+ 4 + 2

...

= 2k−1T (2) +
k−1∑
i=1

2i

Substituting T (2) = 1:

T (n) = 2k−1 · 1 +
k−1∑
i=1

2i

17 / 20



Selecting the Minimum and Maximum:
Divide-and-Conquer Approach

Solving the recurrence

In the MaxMin analysis, we encounter the following geometric
series:

k−1∑
i=1

2i = 21 + 22 + 23 + . . .+ 2k−1

The sum of the first n terms of a geometric series is:

Sn = a
rn − 1

r − 1

For our series:
a = 2 (the first term).
r = 2 (the common ratio).
n = k − 1 (number of terms).

Substituting into the formula:

S = 2
2k−1 − 1

2− 1
= 2(2k−1 − 1) = 2k − 2

18 / 20



Selecting the Minimum and Maximum:
Divide-and-Conquer Approach

Solving the recurrence

2k−1T (2) +
∑k−1

i=1 2i

Substituting T (2) = 1 and
∑k−1

i=1 2i = 2k − 2

T (n) = 2k−1 + 2k − 2

As n = 2k , we get:

T (n) =
n

2
+ n − 2 =

3n

2
− 2

19 / 20



Selecting the Minimum and Maximum:
Divide-and-Conquer Approach

Comparison with Straightforward Method

For the straightforward method, the number of comparisons is:

2n − 2

For the divide-and-conquer algorithm, the number of
comparisons is:

3n

2
− 2

This represents a savings of approximately 25% in
comparisons.

20 / 20


