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Order Statistics: Definition

@ The i-th order statistic of a set of n elements is the /-th
smallest element.

o Examples:

e The minimum of a set is the first order statistic (i = 1).
e The maximum of a set is the n-th order statistic (i = n).

@ A median is the “halfway point” of the set:
o If nis odd, the median occurs at j = "T“
e If nis even, two medians exist:

o Lower median: i = 3

2
o Upper median: i = 5 +1
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Order Statistics: Median Simplification

@ For simplicity, we refer to the lower median as the median.

@ Medians occur at:

i n+1 and i — n+1
2 2
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The Selection Problem: Definition

o Goal: Select the i-th order statistic from a set of n distinct
numbers.
o Input:
e A set A of n distinct numbers.
e An integer i, where 1 </ < n.
@ Output: The element x € A that is larger than exactly i — 1
other elements of A.
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Naive Solution to the Selection Problem

@ Sort the set A using Heapsort or Merge Sort in O(nlogn)
time.

@ Output the j-th element from the sorted array.

e Drawback: Sorting requires O(nlog n) time, but we can solve
the selection problem asymptotically faster.
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Selecting the Minimum and Maximum

@ This problem involves finding both the maximum and
minimum elements in a set of n elements.

@ We use a divide-and-conquer approach to solve this problem
efficiently.
@ The main focus is on the number of element comparisons,
since:
o The frequency of other operations is similar to element
comparisons.
e Comparisons dominate when elements are complex (e.g., large
numbers, strings).
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Selecting the Minimum and Maximum: Straightforward
Approach

StraightMaxMin(a, n, max, min)

1. max < a[l1]

2: min < a[1]

3: for i < 2 to ndo

4: if a[i] > max then
max < ali]

end if

if a[i] < min then
min < a[i]

9: end if

10: end for

@@
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Time Complexity Analysis

o Best case: Elements in increasing order, requiring n — 1
comparisons.

e Worst case: Elements in decreasing order, requiring 2(n — 1)
comparisons.

e Average case: < 2(n— 1) comparisons.
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Selecting the Minimum and Maximum:

Divide-and-Conquer Approach

@ We use a divide-and-conquer strategy:

e Divide the list into smaller sublists.
e Recursively solve for each sublist.
e Combine the results to get the final solution.
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Selecting the Minimum and Maximum:

Divide-and-Conquer Approach

Base Case: Small Inputs
o If the list has one element (n = 1):
o Both the maximum and minimum are that single element.
o If the list has two elements (n = 2):
e One comparison is needed to find the max and min.
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Selecting the Minimum and Maximum:

Divide-and-Conquer Approach

Divide Step: Partitioning the List

@ If the list has more than two elements, divide it into two parts:

P = (a[l],...,a[%]) and P, = (a [g—i-l} ,...,a[n])

@ Recursively apply the divide-and-conquer algorithm to both
parts.
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Selecting the Minimum and Maximum:

Divide-and-Conquer Approach

Conquer Step: Combining Results
@ After finding the maximum and minimum for P; and P,:
o MAX(P) is the larger of:

max (MAX(Py), MAX(P5))
o MIN(P) is the smaller of:
min (MIN(P1), MIN(P,))

@ The final max and min are determined from the two sublists.
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Selecting the Minimum and Maximum:

Divide-and-Conquer Approach

1 Algorithm MaxMin(i, j, max, min)

2 // a[l :n]is a global array. Parameters i and j are integers,
3 //1<i<j<mn. The effect is to set maz and min to the
4 // largest and smallest values in ali : j], respectively.

5

6 if (i = j) then max := min := ali]; // Small(P)

7 else if (i = j — 1) then // Another case of Small(P)
8

9 if (a[i] < a[j]) then

10 {

11 maz := afj]; min := afi];

12

13 else

14

15 maz = ali; min = a[j];

16

17

18 else

19 { //1f Pis not small, divide P into subproblems.
20 // Find where to split the set.

21 mid = | (i +4)/2];

22 // Solve the subproblems.

23 MaxMin(é, mid, maz, min);

21 MaxMin(mid + 1, j, rnazl,minl);

25 // Combine the solutions.

26 if (maz < mazl) then maz := mazl;
27 if (min > minl) then min := minl;

28

29 }
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Selecting the Minimum and Maximum:

Divide-and-Conquer Approach

Example: Show how the divide-and-conquer approach MaxMin
works for the following set of number:

a: (1 2] [3] [4 [5] [6] [7] [8] [9]
22 13 -5 -8 15
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Selecting the Minimum and Maximum:

Divide-and-Conquer Approach

Example: Show how the divide-and-conquer approach MaxMin
works for the following set of number:

®

o

— ®
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Selecting the Minimum and Maximum:

Divide-and-Conquer Approach

Recurrence Relation for MaxMin

@ The number of element comparisons required by the MaxMin
algorithm follows the recurrence relation:

T([5)+T(5])+2 ifn>2
T(n)=<1 if n=2
0 ifn=1
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Selecting the Minimum and Maximum:

Divide-and-Conquer Approach

Solving the recurrence
@ Assume n = 2k for some positive integer k.
@ Expanding the recurrence relation step by step:

T(n)=2T (3)+2

:2(2T<£)+2>+2:4T(£)+4+2

k—1
=2K1T(2)+ ) 2
i=1

@ Substituting T(2) = 1:

k—1
T(n)y=2K1.14)"2
i=1
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Selecting the Minimum and Maximum:

Divide-and-Conquer Approach

Solving the recurrence
@ In the MaxMin analysis, we encounter the following geometric
series:

k—1
22’221+22+23+...+2’<—1
=1

@ The sum of the first n terms of a geometric series is:
rm—1

Sn:ar_l

@ For our series:
o a =2 (the first term).
e r =2 (the common ratio).
e n=k —1 (number of terms).
@ Substituting into the formula:
k—1
5:2%:2(2“1—1):2&2
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Selecting the Minimum and Maximum:

Divide-and-Conquer Approach

Solving the recurrence
0 2K-1T(2) + Sk tof
@ Substituting T(2) =1 and Zf'(:_f 2i =2k _2

T(n)y=2k142k_2

o As n = 2K we get:
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Selecting the Minimum and Maximum:

Divide-and-Conquer Approach

Comparison with Straightforward Method
@ For the straightforward method, the number of comparisons is:

2n —2

@ For the divide-and-conquer algorithm, the number of

comparisons is:

3n
— =2
2

@ This represents a savings of approximately 25% in
comparisons.
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