
CS 2500: Algorithms
Lecture 13: Quick Sort

Shubham Chatterjee

Missouri University of Science and Technology, Department of Computer Science

October 1, 2024

1 / 28



Quicksort Algorithm

A sorting algorithm developed by Tony Hoare in 1959.

Uses a divide-and-conquer approach to sort elements.

In merge sort, the list a[1:n] was divided at its midpoint into
subarrays which were independently sorted and later merged.

In quicksort, the division into two subarrays is made so that
the sorted subarrays do not need to be merged later.

2 / 28



Divide and Conquer in Quicksort

Divide: Partition the array into two subarrays around a pivot
element.

Conquer: Recursively apply quicksort to the subarrays.

Combine: No need to merge, as the array elements are sorted
in place.

3 / 28



Partitioning in Quicksort

Choose a pivot element and rearrange the array such that:

Elements less than the pivot are on the left.

Elements greater than the pivot are on the right.

Pivot is then in its correct position.

4 / 28



Partitioning in Quicksort

Partitioning problem: Given an array a[1 : n] and a pivot x ,
partition the array such that:

∀i , 1 ≤ i ≤ m ⇒ a[i ] ≤ x

∀j ,m + 1 ≤ j ≤ n ⇒ a[j ] > x

where m is the partition index with 1 ≤ m ≤ n.

5 / 28



Hoare Partition

Developed by C.A.R. Hoare as part of the original quicksort.

Uses two indices that move towards each other to swap
elements around the pivot.

Stops when indices cross, leaving the pivot element between
the partitions.

6 / 28



Hoare Partition: Algorithm

7 / 28



Hoare Partition

Algorithm Partition accomplishes an in-place partitioning of
the elements of a[m:p].

It is assumed that a[p] ≥ a[n] and that a[m] is the
partitioning element.

If m = 1 and p = 1 = n, then a[n+1] must be defined and
must be greater than or equal to all elements in a[1:n].

The assumption that a[n] is the partition element is merely
for convenience; other choices for the partitioning element
than the first item in the set are better in practice.

The function Interchange(a,i,j) exchanges a[i] with
a[j].

8 / 28



Hoare Partition: Example

9 / 28



Quick Sort

10 / 28



Quick Sort: Analysis

Quick Sort is a divide-and-conquer algorithm.

The time complexity is determined by the number of element
comparisons, C (n).

The analysis assumes:

Elements are distinct.
Each element has an equal probability of being the pivot
during partition.

11 / 28



Quick Sort: Worst-Case Analysis

In each recursive call to Partition(a,m,p), the pivot divides
the array.

Worst-case occurs when the pivot consistently partitions the
array in a highly unbalanced way (e.g., smallest or largest
element).

12 / 28



Quick Sort: Worst-Case Analysis

Recursive Structure and Comparisons at Each Level

Level 1:
Start by partitioning the entire array of size n.
One Partition call is made.
Comparisons at this level: n

Level 2:
After the first partition, we have two subarrays, but in the
worst case, one subarray is empty, and the other has n − 1
elements.
Two Partition calls are made, but one subarray contains no
elements.
Comparisons at this level: n − 1.

This process continues:
At each level, the size of the subarray decreases by 1.
Comparisons continue until the subarray size reduces to 2, at
which point 1 comparison is made.

13 / 28



Quick Sort: Worst-Case Analysis

Cw (n) = n + (n − 1) + (n − 2) + (n − 3) + · · ·+ 2

=
n∑

k=2

k

=
n(n + 1)

2
− 1

=
n2 + n − 2

2
= O(n2)

14 / 28



Quick Sort: Average-Case Analysis

Let CA(n) be the average number of comparisons made by
Quick Sort to sort an array of size n.

Assumptions:

Distinct Elements: All n elements to be sorted are distinct.
Uniform Pivot Selection: The pivot element v = a[m] in a
call to Partition(a,m,p) has an equal probability of being
any of the p −m elements in the subarray a[m . . . p − 1].

15 / 28



Quick Sort: Average-Case Analysis

Aim:

Find a recurrence equation for CA(n).

Solve the recurrence equation obtained above to determine
the order of growth.

16 / 28



Quick Sort: Average-Case Analysis

Question: How many comparisons does Quick Sort make in the
first partitioning step?

Answer: Quick Sort makes n + 1 comparisons in the first
partitioning step.

17 / 28



Quick Sort: Average-Case Analysis

Number of comparisons of pivot with non-pivot elements:

Total Elements to Partition: n = p −m (the size of the
subarray a[m . . . p − 1]).

Pivot Element: v = a[m].

Non-Pivot Elements: n − 1 (since the pivot is one element).

Each Non-Pivot Element is compared with the pivot at least
once.

Total Comparisons: n − 1.

18 / 28



Quick Sort: Average-Case Analysis

When the First Inner Loop Ends:

After passing all elements less than v , the loop increments i
one more time. This increment leads to a comparison where
a[i ] ≥ v .

This is the first extra comparison, which evaluates to true,
causing the loop to exit.

When the Second Inner Loop Ends:

After passing all elements greater than v , the loop decrements
j one more time. This decrement leads to a comparison where
a[j ] ≤ v .

This is the second extra comparison, which evaluates to
true, causing the loop to exit.

19 / 28



Quick Sort: Average-Case Analysis

Total number of comparisons in the first partition step =
(n − 1) + 1 + 1 = n + 1

20 / 28



Quick Sort: Average-Case Analysis

Recurrence Relation for Average Comparisons:

After partitioning, the array is divided into two subarrays:

Left Subarray: Elements less than the pivot.
Right Subarray: Elements greater than the pivot.

Size of Subarrays:

Left Subarray: k − 1 elements.
Right Subarray: n − k elements.

k is the position of the pivot in the sorted array (i.e., it is the
k-th smallest element).

Probability of Pivot Position: Since each element is equally
likely to be chosen as the pivot, the probability that the pivot
is the k-th smallest element is 1

n for k = 1, 2, . . . , n

21 / 28



Quick Sort: Average-Case Analysis

Recurrence Relation for Average Comparisons

CA(n) = (n + 1) +
1

n

n∑
k=1

[CA(k − 1) + CA(n − k)]

n + 1: The comparisons made in the first partitioning step.
1
n : Probability of pivot being the k-th smallest element.

CA(k − 1): Expected comparisons to sort the left subarray.

CA(n − k): Expected comparisons to sort the right subarray.

22 / 28



Quick Sort: Average-Case Analysis

Solving the Recurrence:

Multiply both sides of the recurrence by n to simplify:

nCA(n) = n(n + 1) + 2 [CA(0) + CA(1) + · · ·+ CA(n − 1)]

Replace n with n − 1:

(n−1)CA(n−1) = (n−1)n+2 [CA(0) + CA(1) + · · ·+ CA(n − 2)]

Subtract the second equation from the first:

nCA(n)− (n − 1)CA(n − 1) = 2n + 2CA(n − 1)

23 / 28



Quick Sort: Average-Case Analysis

Solving the Recurrence:

Simplifying further:

nCA(n)− (n − 1)CA(n − 1) = 2n + 2CA(n − 1)

nCA(n)− (n − 1)CA(n − 1)− 2CA(n − 1) = 2n

nCA(n)− (n + 1)CA(n − 1) = 2n

Dividing both sides of the equation by n(n + 1):

CA(n)

(n + 1)
=

CA(n − 1)

n
+

2

(n + 1)

24 / 28



Quick Sort: Average-Case Analysis

Solving the Recurrence: Substitution Method

Substituting recursively, we get:

CA(n − 1)

(n)
=

CA(n − 2)

(n − 1)
+

2

n

CA(n − 2)

(n − 1)
=

CA(n − 3)

(n − 2)
+

2

n − 1

Continue this process until reaching CA(1).
After n − 1 steps:

CA(n)

(n + 1)
=

CA(1)

(2)
+ 2

(
1

n + 1
+

1

n
+

1

n − 1
+

1

3

)
=

CA(1)

(2)
+ 2

n+1∑
k=3

1

k

Each substitution adds a term 2
k+1 to the sum.

The sum accumulates terms of the form 2
k starting from

k = n + 1 down to k = 3.
25 / 28



Quick Sort: Average-Case Analysis

Approximation Using Integral

We need to find the sum of the series:
∑n+1

k=3
1
k .

This is a partial sum of the harmonic series, excluding the first
two terms (k = 1 and k = 2).

Upper bound using integration:

The harmonic series can be approximated by the natural
logarithm:

n+1∑
k=3

1

k
≤
∫ n+1

2

1

x
dx = loge(n + 1)− loge 2

The integral of 1
x
from x = a to x = b equals loge a− loge b.

The integral provides an upper bound for the sum.

26 / 28



Quick Sort: Average-Case Analysis

The recurrence equation is:

CA(n)

(n + 1)
=

CA(1)

(2)
+ 2

n+1∑
k=3

1

k

Multiply both sides by n + 1:

CA(n) = (n + 1)

(
CA(1)

(2)
+ 2

n+1∑
k=3

1

k

)
Since CA(1) = 0 (sorting one element requires zero comparisons),
we have:

CA(n) = (n + 1)(0 + 2(loge(n + 1)− loge 2))

= 2(n + 1)(loge(n + 1)− loge 2)

= 2(n + 1) loge

(
n + 1

2

)
27 / 28



Quick Sort: Average-Case Analysis

From the previous approximation, we conclude:

The dominant term is n loge n.

Therefore, CA(n) = O(n log n).

Note: We can use base 2 logarithms for simplicity in
computer science contexts.

28 / 28


