CS 2500: Algorithms

Lecture 13: Quick Sort

Shubham Chatterjee

Missouri University of Science and Technology, Department of Computer Science

October 1, 2024

1/28

Quicksort Algorithm

@ A sorting algorithm developed by Tony Hoare in 1959.
@ Uses a divide-and-conquer approach to sort elements.

@ In merge sort, the list a[1:n] was divided at its midpoint into
subarrays which were independently sorted and later merged.

@ In quicksort, the division into two subarrays is made so that
the sorted subarrays do not need to be merged later.

2/28

Divide and Conquer in Quicksort

o Divide: Partition the array into two subarrays around a pivot
element.

@ Conquer: Recursively apply quicksort to the subarrays.

@ Combine: No need to merge, as the array elements are sorted
in place.

3/28

Partitioning in Quicksort

Choose a pivot element and rearrange the array such that:
Elements less than the pivot are on the left.

Elements greater than the pivot are on the right.

Pivot is then in its correct position.

4/28

Partitioning in Quicksort

e Partitioning problem: Given an array a[l : n] and a pivot x,
partition the array such that:

Vi,1<i<m= a[i] <x

Viim+1<j<n=a[j]>x

where m is the partition index with 1 < m < n.

5/28

Hoare Partition

@ Developed by C.A.R. Hoare as part of the original quicksort.

@ Uses two indices that move towards each other to swap
elements around the pivot.

@ Stops when indices cross, leaving the pivot element between
the partitions.

6/28

Hoare Partition: Algorithm

Algorithm Partition(a, m, p)

// Within a[m],a[m +1].... ,a[p — 1] the elements are
// rearranged in such a manner that if initially ¢ = a[m],
// then after completion a[g] = 1 for some g between m
//andp—1,alk] <tform <k<gq andalk] > ¢

// for ¢ < k < p. qis returned. Set a[p] = co.

vi=alml;i:=m; j:=p;
repeat

D00 =Y OV i 00D e

13 until (LL['L] > 11),

14 repeat

Ji=7i—1
16 until (afj] < v);

17 if (¢ < j) then Interchange(a,i,j);
18 } until (i > j);

19 alm] = a[4]; a[j] := v; return j;
20 }

Algorithm Interchange(a, , j)
// Exchange afi] with a[j].
{

alll;
aljls ali]:=p;

7/28

Hoare Partition

@ Algorithm Partition accomplishes an in-place partitioning of
the elements of al[m:p].

@ It is assumed that a[p] > aln] and that a[m] is the
partitioning element.

o If m=1and p=1=n, then a[n+1] must be defined and
must be greater than or equal to all elements in a[1:n].

@ The assumption that a[n] is the partition element is merely
for convenience; other choices for the partitioning element
than the first item in the set are better in practice.

@ The function Interchange(a,i,j) exchanges a[i] with
aljl.

8/28

Hoare Partition: Example

(1) @ @& @ 6B 6 (7 (&) () (10)
65 70 75 80 85 45 400 2 9

-
=

65 45 75 80 8 60 55 50 70 400 3 8

6o 45 H50 80 8 60 BH55 T 0 +oo0 4 7

65 45 50 55 60 8 80 75 70 400 6 5

60 45 50 55 65 8 80 7 0 +

9/28

1 Algorithm QuickSort(p, g)

2 // Sorts the elements a[p], ..., a[g] which reside in the global
3 /[array a[l : n] into ascending order; a[n + 1] is considered to
4 // be defined and must be > all the elements in a[l : n].

5

6 if (p < ¢) then // If there are more than one element

7

8 // divide P into two subproblems.

9 7 = Partition(a, p,q + 1);

10 // i is the position of the partitioning element.
11 // Solve the subproblems.

12 QuickSort(p,j — 1);

13 QuickSort(7 + 1,q);

11 // There is no need for combining solutions.

15

10/28

Quick Sort: Analysis

@ Quick Sort is a divide-and-conquer algorithm.

@ The time complexity is determined by the number of element
comparisons, C(n).

@ The analysis assumes:

o Elements are distinct.
e Each element has an equal probability of being the pivot
during partition.

11/28

Quick Sort: Worst-Case Analysis

@ In each recursive call to Partition(a,m,p), the pivot divides
the array.

@ Worst-case occurs when the pivot consistently partitions the
array in a highly unbalanced way (e.g., smallest or largest
element).

12/28

Quick Sort: Worst-Case Analysis

Recursive Structure and Comparisons at Each Level
o Level 1:
e Start by partitioning the entire array of size n.
e One Partition call is made.
o Comparisons at this level: n

o Level 2:

o After the first partition, we have two subarrays, but in the
worst case, one subarray is empty, and the other has n — 1
elements.

e Two Partition calls are made, but one subarray contains no
elements.

e Comparisons at this level: n— 1.

e This process continues:

o At each level, the size of the subarray decreases by 1.
e Comparisons continue until the subarray size reduces to 2, at
which point 1 comparison is made.

13/28

Quick Sort: Worst-Case Analysis

Co(n)=n+(n-1)+(n—-2)+(n—-3)+---+2

:Zk
k=2
_ n(n+1)

-1
P +n—2

14 /28

Quick Sort: Average-Case Analysis

@ Let Ca(n) be the average number of comparisons made by
Quick Sort to sort an array of size n.

@ Assumptions:
e Distinct Elements: All n elements to be sorted are distinct.
o Uniform Pivot Selection: The pivot element v = a[m] in a
call to Partition(a,m,p) has an equal probability of being
any of the p — m elements in the subarray a[m...p —1].

15/28

Quick Sort: Average-Case Analysis

Aim:
e Find a recurrence equation for Ca(n).

@ Solve the recurrence equation obtained above to determine
the order of growth.

16/28

Quick Sort: Average-Case Analysis

Question: How many comparisons does Quick Sort make in the
first partitioning step?

Answer: Quick Sort makes n+ 1 comparisons in the first
partitioning step.

17/28

Quick Sort: Average-Case Analysis

Number of comparisons of pivot with non-pivot elements:

Total Elements to Partition: n = p — m (the size of the
subarray a[m...p —1]).

Pivot Element: v = a[m].
Non-Pivot Elements: n— 1 (since the pivot is one element).

Each Non-Pivot Element is compared with the pivot at least
once.

Total Comparisons: n — 1.

18/28

Quick Sort: Average-Case Analysis

When the First Inner Loop Ends:

@ After passing all elements less than v, the loop increments f
one more time. This increment leads to a comparison where
afi] > v.

@ This is the first extra comparison, which evaluates to true,
causing the loop to exit.

When the Second Inner Loop Ends:

@ After passing all elements greater than v, the loop decrements
Jj one more time. This decrement leads to a comparison where
alj] <.

@ This is the second extra comparison, which evaluates to
true, causing the loop to exit.

19/28

Quick Sort: Average-Case Analysis

@ Total number of comparisons in the first partition step =
(n—1)4+1+1=n+1

20/28

Quick Sort: Average-Case Analysis

Recurrence Relation for Average Comparisons:
@ After partitioning, the array is divided into two subarrays:

o Left Subarray: Elements less than the pivot.
o Right Subarray: Elements greater than the pivot.

@ Size of Subarrays:
o Left Subarray: k — 1 elements.
e Right Subarray: n — k elements.
@ k is the position of the pivot in the sorted array (i.e., it is the
k-th smallest element).
@ Probability of Pivot Position: Since each element is equally
likely to be chosen as the pivot, the probability that the pivot
is the k-th smallest element is % fork=1,2,...,n

21/28

Quick Sort: Average-Case Analysis

Recurrence Relation for Average Comparisons

Ca(n) = (n+1)+ % > [Calk = 1) + Ca(n— k)]
k=1

n+ 1: The comparisons made in the first partitioning step.
%: Probability of pivot being the k-th smallest element.
Ca(k — 1): Expected comparisons to sort the left subarray.

Ca(n — k): Expected comparisons to sort the right subarray.

22/28

Quick Sort: Average-Case Analysis

Solving the Recurrence:
@ Multiply both sides of the recurrence by n to simplify:

nCa(n) = n(n+ 1) +2[Ca(0) + Ca(1) + - - - + Ca(n —1)]
@ Replace n with n —1:
(n—1)Ca(n—1) = (n—1)n+2[Ca(0) + Ca(1l) + - -- + Ca(n — 2)]
@ Subtract the second equation from the first:

nCa(n) — (n—1)Ca(n—1) =2n+2Ca(n—1)

23/28

Quick Sort: Average-Case Analysis

Solving the Recurrence:
e Simplifying further:
nCa(n) — (n—1)Ca(n—1) =2n+2Ca(n—1)
nCa(n) —(n—1)Ca(n—1) —2Ca(n—1) =2n
nCa(n) — (n+1)Ca(n—1) =2n

e Dividing both sides of the equation by n(n+ 1):

CA(I‘I) _ CA(n — 1) n 2

(n+1) n (n+1)

24/28

Quick Sort: Average-Case Analysis

Solving the Recurrence: Substitution Method
@ Substituting recursively, we get:

Caln—=1) _ Caln—=2) 2

() (n-1)
Ca(n—2) _ Ca(n—3) N 2
(n—1) (n—2) n—1

e Continue this process until reaching Ca(1).
o After n — 1 steps:

Caln) CA(1)+2< 1 1, 1 1)

(n+1) (2) n+1 n n—-1 3
CA(l) n—&-l1
2 +2kz_3k

o Each substitution adds a term k%rl to the sum.

e The sum accumulates terms of the form % starting from
k =n+1down to k = 3.

25/28

Quick Sort: Average-Case Analysis

Approximation Using Integral

® We need to find the sum of the series: 773 1.

e This is a partial sum of the harmonic series, excluding the first
two terms (k =1 and k = 2).

@ Upper bound using integration:

e The harmonic series can be approximated by the natural
logarithm:

n+1
/ —dx = log,(n+ 1) — log, 2
2 X

]
x| =
IN

@ The integral of % from x = a to x = b equals log, a — log, b.
@ The integral provides an upper bound for the sum.

26/28

Quick Sort: Average-Case Analysis

The recurrence equation is:

Caln) Ca(l) <21
) (@) TP

Multiply both sides by n+ 1:

n+1
Ca(n) = (n+ <CA(1 +zz)

Since Ca(1) = 0 (sorting one element requires zero comparisons),
we have:

Ca(n) = (n+1)(0 + 2(loge(n + 1) — log. 2))
= 2(n+ 1)(loge(n+ 1) — log, 2)
=2(n+1)log, <nz—|—1>

27/28

Quick Sort: Average-Case Analysis

From the previous approximation, we conclude:
@ The dominant term is nlog, n.
@ Therefore, Ca(n) = O(nlog n).

@ Note: We can use base 2 logarithms for simplicity in
computer science contexts.

28/28

