
CS 2500: Algorithms
Lecture 12: Heap Sort

Shubham Chatterjee

Missouri University of Science and Technology, Department of Computer Science

September 26, 2024

1 / 41



Introduction to Heap Sort

Heap sort is a comparison-based sorting algorithm.

It builds a binary heap and repeatedly extracts the maximum
element.

Time complexity: O(n log n) in the worst, average, and best
cases.

It is not a stable sort but is in-place.

2 / 41



Heapsort: Combining the Best Attributes

Like merge sort, but unlike insertion sort, heapsort’s running
time is O(n log n).

Like insertion sort, but unlike merge sort, heapsort sorts in
place: only a constant number of array elements are stored
outside the input array at any time.

Heapsort combines the best attributes of merge sort and
insertion sort.

Heapsort introduces a new algorithm design technique: using
the heap data structure to manage information.

The heap is not to be confused with garbage-collected storage
(e.g., in Java or Python). In this context, a heap is a specific
data structure.

The heap is also useful for implementing priority queues.

3 / 41



Binary Heap

A binary heap is a complete binary tree.

Two types:

A max-heap satisfies the property that every parent node is
greater than or equal to its children:

A[Parent(i)] ≥ A[i]

A min-heap satisfies the opposite property: every parent node
is less than or equal to its children:

A[Parent(i)] ≤ A[i]

In a max-heap, the largest element is stored at the root.
In a min-heap, the smallest element is at the root.

Heap is typically represented as an array.

4 / 41



Array Representation of Heap

The heap data structure is an array object that can be viewed
as a nearly complete binary tree.

Each node corresponds to an element of the array.

The tree is completely filled on all levels except possibly the
lowest, which is filled from left to right.

The array A[1...n] represents the heap, with an attribute
A.heap size to track the number of elements in the heap.

If A.heap size = 0, the heap is empty.

The root of the tree is A[1].

5 / 41



Array Representation of Heap

For any element at index i :

Parent: i/2
Left Child: 2i
Right Child: 2i + 1

Figure: A max-heap viewed as (a) a binary tree and (b) an array. The
number within the circle at each node in the tree is the value stored at
that node. The number above a node is the corresponding index in the
array. Above and below the array are lines showing parent-child
relationships, with parents always to the left of their children. The tree
has height 3, and the node at index 4 (with value 8) has height 1.

6 / 41



Problem 1: Min and Max Elements in a Heap of Height h

Problem: What are the minimum and maximum numbers of
elements in a heap of height h?
Solution:

Maximum number of elements:
A heap is a complete binary tree, so the maximum number of
nodes occurs when all levels are fully filled.
The number of elements in a complete binary tree of height h
is:

Max elements = 2h+1 − 1

Minimum number of elements:
The minimum number of nodes occurs when all levels except
the last are fully filled, and the last level has at least one node.
The minimum number of elements is:

Min elements = 2h

7 / 41



Problem 2: Height of an n-Element Heap

Problem: Show that an n-element heap has height ⌊log n⌋.
Solution:

A heap is a complete binary tree, and the height of a complete
binary tree with n elements can be derived as follows:

The height is determined by the number of edges from the
root to the deepest node.

The number of elements at each level of a complete binary
tree:

Level 0: 1, Level 1: 2, Level 2: 4, . . .

The total number of elements up to height h is:

20 + 21 + · · ·+ 2h = 2h+1 − 1

Solving n = 2h+1 − 1 gives h = ⌊log n⌋.

8 / 41



Problem 3: Largest Value in a Max-Heap Subtree

Problem: Show that in any subtree of a max-heap, the root of the
subtree contains the largest value.
Solution:

By the max-heap property, for any node i , we have:

A[Parent(i)] ≥ A[i ]

This holds recursively for all nodes in the heap. Hence, in any
subtree, the root node (which is a parent) will always contain
the largest value.

The subtree rooted at node i contains values no larger than
A[i ].

This property ensures that the largest element in any subtree
is stored at its root.

9 / 41



Problem 4: Smallest Element in a Max-Heap

Problem: Where in a max-heap might the smallest element reside,
assuming all elements are distinct?
Solution:

In a max-heap, the smallest element is likely to be found in
the last level (the leaves).

Since the heap property ensures that parents are larger than
children, the smallest element cannot reside in the upper
levels.

The leaf nodes are the elements furthest down in the tree, so
the smallest element will always be one of the leaves.

10 / 41



Problem 5: Levels of the k-th Largest Element in
Max-Heap

Problem: At which levels in a max-heap might the k-th largest
element reside, for 2 ≤ k ≤ ⌊n/2⌋, assuming all elements are
distinct?
Solution:

The root contains the largest element.

The next largest elements (for k ≥ 2) will be in the top levels.

For k = 2, the second largest element must be one of the
children of the root.

For larger k , the k-th largest element can appear in deeper
levels but will still be close to the root in terms of level.

Generally, the k-th largest element will appear in the top few
levels, but never as deep as the leaves.

11 / 41



Problem 6: Is a Sorted Array a Min-Heap?

Problem: Is an array that is in sorted order a min-heap?
Solution:

Yes, an array in ascending sorted order is a min-heap.

In a min-heap, each parent must be smaller than or equal to
its children.

Since the array is sorted, every parent element will always be
smaller than or equal to its children, satisfying the min-heap
property.

12 / 41



Problem 7: Is the Given Array a Max-Heap?

Problem: Is the array [33, 19, 20, 15, 13, 10, 2, 13, 16, 12] a
max-heap?
Solution:

Check the max-heap property for each element:

A[1] = 33, which is larger than its children A[2] = 19 and
A[3] = 20.
A[2] = 19, which is larger than its children A[4] = 15 and
A[5] = 13.
A[3] = 20, which is larger than its children A[6] = 10 and
A[7] = 2.
Other children also satisfy the max-heap property.

Since all nodes satisfy the max-heap property, the array is a
max-heap.

13 / 41



Problem 8: Indices of Leaf Nodes in an n-Element Heap

Problem: Show that, with the array representation for storing an
n-element heap, the leaves are the nodes indexed by
⌊n/2⌋+ 1, ⌊n/2⌋+ 2, . . . , n.
Solution:

In a binary heap, a node at index i has children at indices 2i
and 2i + 1.

Therefore, the nodes that have children must satisfy
i ≤ ⌊n/2⌋.
Any node with index greater than ⌊n/2⌋ cannot have children,
meaning these nodes are the leaf nodes.

Hence, the leaf nodes are indexed by:

⌊n/2⌋+ 1, ⌊n/2⌋+ 2, . . . , n

Example: If n = 10, the leaves are at indices
⌊10/2⌋+ 1 = 6, 7, 8, 9, 10.

14 / 41



Maintaining the Heap Property

Introduction to Max-Heapify

Max-Heapify is an algorithm that maintains the max-heap
property of a binary heap.

Inputs:

An array A that represents the heap.
An index i into the array.

The algorithm assumes:

The subtrees rooted at Left(i) and Right(i) are max-heaps.
The element A[i ] may violate the max-heap property.

15 / 41



Maintaining the Heap Property

How Max-Heapify Works:

The goal of Max-Heapify is to “float down” the value at A[i ]
if it is smaller than one of its children.

This ensures that the subtree rooted at index i becomes a
valid max-heap.

The algorithm compares A[i ] with A[Left(i)] and A[Right(i)].

The largest value among these three is assigned to the
variable largest.

If largest ̸= i , the values at A[i ] and A[largest] are swapped,
and the process repeats for the subtree rooted at largest.

16 / 41



Maintaining the Heap Property

17 / 41



Maintaining the Heap Property

Algorithm Max-Heapify(A, i)

1: l ← Left(i)
2: r ← Right(i)
3: largest ← i
4: if l ≤ A.heap size and A[l ] > A[largest] then
5: largest ← l
6: end if
7: if r ≤ A.heap size and A[r ] > A[largest] then
8: largest ← r
9: end if

10: if largest ̸= i then
11: exchange A[i ] with A[largest]
12: Max-Heapify(A, largest)
13: end if

18 / 41



Analysis of Max-Heapify

We analyze the time complexity of the Max-Heapify
algorithm.

Our goal is to:

Derive the recurrence relation for Max-Heapify’s running time.
Solve the recurrence.

19 / 41



Analysis of Max-Heapify

Question: When does the worst-case scenario for a subtree
rooted at a child of the root in a binary heap occur?

Answer: When the bottom level is exactly half full.

20 / 41



Analysis of Max-Heapify

What Does Half-Full Mean?

A binary heap is a complete binary tree where levels are filled
from left to right.

When the bottom level is half full, only the left half of the
bottom level has nodes.

If the bottom level has a maximum capacity of 2h nodes, a
half-full bottom level has:

2h

2
= 2h−1 nodes

21 / 41



Analysis of Max-Heapify

What Does Half-Full Mean?

When the bottom level is half full:

The left subtree contains all the nodes on the left side of the
bottom level.
The right subtree contains no nodes from the bottom level.

This configuration maximizes the size of the left subtree
rooted at the left child of the root.

22 / 41



Analysis of Max-Heapify

Total Nodes in the Heap

Total number of nodes in a binary heap = nodes above the
last level + nodes at the last level.

Number of nodes at level i = 2i .

Nodes above the last level (fully filled levels 0 to h − 1):

Nodes above last level =
h−1∑
i=0

2i = 2h − 1

Nodes at the last level (half full):

Nodes at last level = 2h−1

Therefore, the total number of nodes n is:

n = (2h − 1) + 2h−1 = 2h + 2h−1 − 1

23 / 41



Analysis of Max-Heapify

Nodes in the Left Subtree
Nodes in the left subtree above the last level:

The left subtree occupies half of the nodes at each level of the
entire tree beyond the root.
Thus, at level l , the left subtree has half the nodes of the
entire tree at that level.

Nodes at levell in left subtree = 2l

2
= 2l−1

Therefore,
number of nodes in the left subtree above the last level =∑h−1

l=1 2l−1 = 2h−1 − 1

Nodes in the left subtree at the last level (all nodes in
the left half of the bottom level):

Left at last level = 2h−1

Therefore, the total number of nodes in the left subtree is:

L(n) = (2h−1 − 1) + 2h−1 = 2h − 1

24 / 41



Analysis of Max-Heapify

Calculating the Ratio L(n)
n

We now calculate the ratio of the number of nodes in the left
subtree to the total number of nodes:

L(n)

n
=

2h − 1

2h + 2h−1 − 1

For large h, the −1 terms become negligible.

To simplify, divide both the numerator and denominator by
2h−1:

L(n)

n
≈ 2

2 + 1
=

2

3

25 / 41



Analysis of Max-Heapify

Result

The left subtree contains up to 2
3 of the total nodes.

This is the maximum possible ratio for a subtree rooted at a
child of the root.

This configuration maximizes the size of one subtree, making
it the worst-case scenario for algorithms that depend on the
balance of the tree.

26 / 41



Analysis of Max-Heapify

Deriving the Recurrence for Max-Heapify

Let T (n) be the worst-case time complexity of Max-Heapify
for a heap of size n.

The root node compares itself with its children and may
perform a swap O(1).

Then, Max-Heapify is recursively called on one of the
subtrees, which has size at most 2n

3 .

This leads to the recurrence relation:

T (n) = T

(
2n

3

)
+ O(1)

27 / 41



Analysis of Max-Heapify

Solving the recurrence: Applying the Master Theorem

The recurrence T (n) = T
(
2n
3

)
+ O(1) fits the form of the

Master Theorem:

T (n) = aT
(n
b

)
+ O(nd)

For our recurrence:

a = 1 (one recursive call),
b = 2

3 (subproblem size reduces by 2
3 ),

d = 0 (constant work outside the recursive call).

To apply the Master Theorem, we calculate logb a:

log 2
3
1 = 0

28 / 41



Analysis of Max-Heapify

Using the Master Theorem, we check the case:

Case 2 applies when logb a = d , i.e., 0 = 0.

Thus, the solution to the recurrence is:

T (n) = O(log n)

This means the Max-Heapify procedure runs in O(log n) time
in the worst case.

29 / 41



Analysis of Max-Heapify

Conclusion:

We proved that each child of the root in a binary heap is the
root of a subtree containing at most 2n

3 nodes.

We derived the recurrence relation for Max-Heapify:

T (n) = T

(
2n

3

)
+ O(1)

Using the Master Theorem, we solved the recurrence and
found that Max-Heapify runs in O(log n) time.

30 / 41



Building a Heap

31 / 41



Building a Heap

Build-Max-Heap is an algorithm that converts an unordered
array A[1 . . . n] into a max-heap.

It works by calling the Max-Heapify algorithm in a
bottom-up manner, ensuring that each node satisfies the
max-heap property.

The algorithm builds the heap starting from the non-leaf
nodes, which are located in the first half of the array.

The elements in the subarray A[⌊n/2⌋+ 1 . . . n] are leaves and
are already valid 1-element heaps.

32 / 41



Building a Heap

Algorithm Build-Max-Heap(A, n)

1: A.heap size← n
2: for i = ⌊n/2⌋ to 1 do
3: Max-Heapify(A, i)
4: end for

33 / 41



Analysis of Build-Max-Heap

A simple upper bound on the running time of
Build-Max-Heap:

Each call to Max-Heapify takes O(log n) time.
Build-Max-Heap makes O(n) calls to Max-Heapify.

Thus, the running time is O(n log n).

However, this upper bound is not as tight as it can be.

34 / 41



Analysis of Build-Max-Heap

Tighter Asymptotic Bound for Build-Max-Heap

The time for Max-Heapify to run at a node depends on the
height of the node.

Most nodes in a heap are at lower heights, so they require less
time.

Let this constant time be c .
So time for node at height h = c · h.

The maximum height of an n-element heap is ⌊log n⌋.
At most Nh = ⌈ n

2h+1 ⌉ nodes have a height h.

So we get: T (n) =
∑⌊log n⌋

h=0 Nh · c · h
We need to approximate ⌈x⌉(where x = Nh) in a way that
allows us to simplify the summation.

35 / 41



Analysis of Build-Max-Heap

Simplifying the Bound

Observation:
⌈x⌉ ≤ 2x for any x ≥ 1

2
To use this inequality, we need to ensure that: x = n

2h+1 ≥ 1
2 .

For the range of h we are considering (0 ≤ h ≤ ⌊log n⌋), x ≥ 1
2

is true.
At h = 0:

n

20+1
=

n

2
≥ 1

2
since n ≥ 1

At h = ⌊log2 n⌋:

n

2⌊log2 n⌋+1
≈ n

2log2 n
=

n

n
= 1 ≥ 1

2

Therefore, the approximation holds throughout the range of h
we are considering.

Why is this important?
Ensures Applicability: It allows us to safely apply the
inequality ⌈x⌉ ≤ 2x because x meets the necessary condition.

Applying the approximation: n
2h+1 ≤ 2

(
n

2h+1

)
= n

2h
.

36 / 41



Analysis of Build-Max-Heap

Simplifying the Bound

T (n) =

⌊log n⌋∑
h=0

⌈ n

2h+1

⌉
ch ≤

⌊log n⌋∑
h=0

n

2h
ch

= cn

⌊log n⌋∑
h=0

h

2h

≤ cn
∞∑
h=0

h

2h

≤ cn · 1/2

(1− 1/2)2

= O(n)

37 / 41



Analysis of Build-Max-Heap

Key Takeaways

Build-Max-Heap constructs a max-heap from an unordered
array in linear time.

Although a naive analysis suggests O(n log n), a tighter
analysis shows that the actual running time is O(n).

The tighter bound is achieved by considering the number of
nodes at each height and the time required for Max-Heapify
at each height.

38 / 41



Heap Sort: Algorithm

Algorithm Heap-Sort(A, n)

1: Build-Max-Heap(A, n)
2: for i = n to 2 do
3: Exchange A[1] with A[i ]
4: A.heap-size← A.heap-size− 1
5: Max-Heapify(A, 1)
6: end for

39 / 41



Heap Sort: Example

40 / 41



Heap Sort: Analysis

The Heap-Sort algorithm takes O(n log n) time, since the
call to Build-Max-Heap takes O(n) time and each of the
n − 1 calls to Max-Heapify takes O(log n) time.

41 / 41


