CS 2500: Algorithms

Lecture 12: Heap Sort

Shubham Chatterjee
Missouri University of Science and Technology, Department of Computer Science

September 26, 2024

1/41

Introduction to Heap Sort

@ Heap sort is a comparison-based sorting algorithm.

@ It builds a binary heap and repeatedly extracts the maximum
element.

e Time complexity: O(nlogn) in the worst, average, and best
cases.

@ It is not a stable sort but is in-place.

2/41

Heapsort: Combining the Best Attributes

@ Like merge sort, but unlike insertion sort, heapsort's running
time is O(nlog n).

@ Like insertion sort, but unlike merge sort, heapsort sorts in
place: only a constant number of array elements are stored
outside the input array at any time.

@ Heapsort combines the best attributes of merge sort and
insertion sort.

@ Heapsort introduces a new algorithm design technique: using
the heap data structure to manage information.

@ The heap is not to be confused with garbage-collected storage
(e.g., in Java or Python). In this context, a heap is a specific
data structure.

@ The heap is also useful for implementing priority queues.

3/41

Binary Heap

@ A binary heap is a complete binary tree.
@ Two types:

e A max-heap satisfies the property that every parent node is
greater than or equal to its children:

AlParent(i)] > A[i]

e A min-heap satisfies the opposite property: every parent node
is less than or equal to its children:

A[Parent(i)] < AJi]

e In a max-heap, the largest element is stored at the root.
e In a min-heap, the smallest element is at the root.

@ Heap is typically represented as an array.

4/41

Array Representation of Heap

@ The heap data structure is an array object that can be viewed
as a nearly complete binary tree.

@ Each node corresponds to an element of the array.

@ The tree is completely filled on all levels except possibly the
lowest, which is filled from left to right.

@ The array A[1...n] represents the heap, with an attribute
A .heap_size to track the number of elements in the heap.

o If A.heap_size = 0, the heap is empty.
@ The root of the tree is A[1].

5/41

Array Representation of Heap

For any element at index i:
e Parent: i/2
o Left Child: 2/
e Right Child: 2/ +1

1

16)
s / \ R
14 10

NG oSNNS Lriiserssw
8 7) (9 (3 \16\14\10\8|7\9\ \2 \ |
el 10/ . ———
(2) (4) (1
o)

Figure: A max-heap viewed as (a) a binary tree and (b) an array. The
number within the circle at each node in the tree is the value stored at
that node. The number above a node is the corresponding index in the
array. Above and below the array are lines showing parent-child
relationships, with parents always to the left of their children. The tree
has height 3, and the node at index 4 (with value 8) has height 1.
6/41

Problem 1: Min and Max Elements in a Heap of Height h

Problem: What are the minimum and maximum numbers of
elements in a heap of height h?
Solution:
e Maximum number of elements:
o A heap is a complete binary tree, so the maximum number of
nodes occurs when all levels are fully filled.
e The number of elements in a complete binary tree of height h
IS:
Max elements = 2+ — 1

@ Minimum number of elements:

e The minimum number of nodes occurs when all levels except
the last are fully filled, and the last level has at least one node.
e The minimum number of elements is:

Min elements = 2"

7/41

Problem 2: Height of an n-Element Heap

Problem: Show that an n-element heap has height |log n]|.
Solution:

@ A heap is a complete binary tree, and the height of a complete
binary tree with n elements can be derived as follows:

@ The height is determined by the number of edges from the
root to the deepest node.

@ The number of elements at each level of a complete binary

tree:
Level 0: 1, Level 1: 2, Level 2: 4,...

@ The total number of elements up to height h is:
20+21+"'+2h:2h+1_1
e Solving n = 2h+1 — 1 gives h = [logn|.

8/41

Problem 3: Largest Value in a Max-Heap Subtree

Problem: Show that in any subtree of a max-heap, the root of the
subtree contains the largest value.
Solution:

@ By the max-heap property, for any node /, we have:
AlParent(i)] > A[f]

@ This holds recursively for all nodes in the heap. Hence, in any
subtree, the root node (which is a parent) will always contain
the largest value.

@ The subtree rooted at node i contains values no larger than
Ali].

@ This property ensures that the largest element in any subtree
is stored at its root.

9/41

Problem 4: Smallest Element in a Max-Heap

Problem: Where in a max-heap might the smallest element reside,
assuming all elements are distinct?
Solution:

@ In a max-heap, the smallest element is likely to be found in
the last level (the leaves).

@ Since the heap property ensures that parents are larger than
children, the smallest element cannot reside in the upper
levels.

@ The leaf nodes are the elements furthest down in the tree, so
the smallest element will always be one of the leaves.

10/41

Problem 5: Levels of the k-th Largest Element in

Max-Heap

Problem: At which levels in a max-heap might the k-th largest
element reside, for 2 < k < |n/2], assuming all elements are
distinct?

Solution:

The root contains the largest element.
The next largest elements (for k > 2) will be in the top levels.

For k = 2, the second largest element must be one of the
children of the root.

For larger k, the k-th largest element can appear in deeper
levels but will still be close to the root in terms of level.

Generally, the k-th largest element will appear in the top few
levels, but never as deep as the leaves.

11/41

Problem 6: Is a Sorted Array a Min-Heap?

Problem: Is an array that is in sorted order a min-heap?
Solution:

@ Yes, an array in ascending sorted order is a min-heap.

@ In a min-heap, each parent must be smaller than or equal to
its children.

@ Since the array is sorted, every parent element will always be
smaller than or equal to its children, satisfying the min-heap
property.

12/41

Problem 7: Is the Given Array a Max-Heap?

Problem: Is the array [33,19,20,15,13,10,2,13,16,12] a
max-heap?
Solution:
@ Check the max-heap property for each element:
o A[1] = 33, which is larger than its children A[2] =19 and

A3] = 20.

o A[2] =19, which is larger than its children A[4] = 15 and
A5] = 13.

o A[3] = 20, which is larger than its children A[6] = 10 and
A7l =2.

o Other children also satisfy the max-heap property.

@ Since all nodes satisfy the max-heap property, the array is a
max-heap.

13/41

Problem 8: Indices of Leaf Nodes in an n-Element Heap

Problem: Show that, with the array representation for storing an
n-element heap, the leaves are the nodes indexed by

|n/2] +1,[n/2] +2,...,n.

Solution:

@ In a binary heap, a node at index i has children at indices 2i
and 2/ + 1.

@ Therefore, the nodes that have children must satisfy
i<|n/2].

@ Any node with index greater than | n/2] cannot have children,
meaning these nodes are the leaf nodes.

@ Hence, the leaf nodes are indexed by:
ln/2] +1,[n/2] +2,...,n

@ Example: If n = 10, the leaves are at indices
|10/2] +1=16,7,8,9,10.

14/41

Maintaining the Heap Property

Introduction to Max-Heapify
@ Max-Heapify is an algorithm that maintains the max-heap
property of a binary heap.
@ Inputs:

o An array A that represents the heap.
e An index i into the array.

@ The algorithm assumes:

o The subtrees rooted at Left(i) and Right(i) are max-heaps.
o The element A[/] may violate the max-heap property.

15/41

Maintaining the Heap Property

How Max-Heapify Works:

@ The goal of Max-Heapify is to “float down” the value at A[/]
if it is smaller than one of its children.

@ This ensures that the subtree rooted at index / becomes a
valid max-heap.

@ The algorithm compares A[i] with A[Left(i)] and A[Right(/)].
@ The largest value among these three is assigned to the
variable /argest.

o If largest # i, the values at A[i] and A[largest] are swapped,
and the process repeats for the subtree rooted at /argest.

16/41

Maintaining the Heap Property

16.‘ '161
AT NG 2 N
L SNG SN 4/ \ 6/ N
[14 7)) 09 (3 9) 3
S\ o/ N
(2 8) (1) (2) (8) (1
@ G
16

4/ \ 6/ \
s/ _9_.\- 10/ R

(2) @) (1
- L ©@

17/41

Maintaining the Heap Property

Algorithm Max-Heapify(A, i)

eI L2NPE

[< Left(i)

r < Right(/)

largest < i

if / < A.heap_size and A[/] > A[largest] then
largest < |

end if

if r < A.heap_size and A[r] > A[largest] then
largest < r

end if

if largest # i then
exchange A[i] with A[largest]
Max-Heapify(A, largest)

. end if

18/41

Analysis of Max-Heapify

@ We analyze the time complexity of the Max-Heapify
algorithm.
@ Our goal is to:

o Derive the recurrence relation for Max-Heapify's running time.
e Solve the recurrence.

19/41

Analysis of Max-Heapify

@ Question: When does the worst-case scenario for a subtree
rooted at a child of the root in a binary heap occur?

@ Answer: When the bottom level is exactly half full.

20/41

Analysis of Max-Heapify

What Does Half-Full Mean?

@ A binary heap is a complete binary tree where levels are filled
from left to right.

@ When the bottom level is half full, only the left half of the
bottom level has nodes.

o If the bottom level has a maximum capacity of 2/ nodes, a
half-full bottom level has:
2h

> = 2h=1 nodes

21/41

Analysis of Max-Heapify

What Does Half-Full Mean?
@ When the bottom level is half full:

o The left subtree contains all the nodes on the left side of the
bottom level.
e The right subtree contains no nodes from the bottom level.

@ This configuration maximizes the size of the left subtree
rooted at the left child of the root.

22/41

Analysis of Max-Heapify

Total Nodes in the Heap

@ Total number of nodes in a binary heap = nodes above the
last level + nodes at the last level.

o Number of nodes at level i = 2'.
e Nodes above the last level (fully filled levels 0 to h — 1):

h—1
Nodes above last level = Z2i =2h_1
i=0

o Nodes at the last level (half full):
Nodes at last level = 2/~1
@ Therefore, the total number of nodes n is:

n=(0"—1)2M1 =201 1

23/41

Analysis of Max-Heapify

Nodes in the Left Subtree
@ Nodes in the left subtree above the last level:
o The left subtree occupies half of the nodes at each level of the
entire tree beyond the root.
e Thus, at level /, the left subtree has half the nodes of the
entire tree at that level.
@ Nodes at levellin left subtree = %/ =2
o Therefore,
number of nodes in the left subtree above the last level =
h—1 ol-1 _oh—=1 _ 1
=1 =
e Nodes in the left subtree at the last level (all nodes in
the left half of the bottom level):

-1

Left at last level = 21
@ Therefore, the total number of nodes in the left subtree is:
L(n)= (2"t —1)4 21 =20 _1

24/41

Analysis of Max-Heapify

Calculating the Ratio @

@ We now calculate the ratio of the number of nodes in the left
subtree to the total number of nodes:
Lny 2h-1
n 2hy2h-1_7

o For large h, the —1 terms become negligible.

@ To simplify, divide both the numerator and denominator by
2h-1.

25/41

Analysis of Max-Heapify

Result
@ The left subtree contains up to % of the total nodes.

@ This is the maximum possible ratio for a subtree rooted at a
child of the root.

@ This configuration maximizes the size of one subtree, making
it the worst-case scenario for algorithms that depend on the
balance of the tree.

26/41

Analysis of Max-Heapify

Deriving the Recurrence for Max-Heapify

e Let T(n) be the worst-case time complexity of Max-Heapify
for a heap of size n.

@ The root node compares itself with its children and may
perform a swap O(1).

@ Then, Max-Heapify is recursively called on one of the
subtrees, which has size at most %”

@ This leads to the recurrence relation:

T(m) =T (23”> +o(1)

27 /41

Analysis of Max-Heapify

Solving the recurrence: Applying the Master Theorem
@ The recurrence T(n) =T (%) + O(1) fits the form of the
Master Theorem:
n

T(n):aT<b

) +0(n%)

@ For our recurrence:

e a =1 (one recursive call),
o b= % (subproblem size requces by 2), .
o d = 0 (constant work outside the recursive call).

@ To apply the Master Theorem, we calculate logy, a:

log21=0
3

28/41

Analysis of Max-Heapify

Using the Master Theorem, we check the case:

Case 2 applies when log,a = d, i.e., 0 =0.

Thus, the solution to the recurrence is:
T(n) = O(logn)

@ This means the Max-Heapify procedure runs in O(log n) time
in the worst case.

29/41

Analysis of Max-Heapify

Conclusion:

@ We proved that each child of the root in a binary heap is the

root of a subtree containing at most %” nodes.

@ We derived the recurrence relation for Max-Heapify:

T(n)=T <23n> + 0(1)

@ Using the Master Theorem, we solved the recurrence and
found that Max-Heapify runs in O(log n) time.

30/41

Building a Heap

31/41

Building a Heap

@ Build-Max-Heap is an algorithm that converts an unordered
array A[1...n] into a max-heap.

o It works by calling the Max-Heapify algorithm in a
bottom-up manner, ensuring that each node satisfies the
max-heap property.

@ The algorithm builds the heap starting from the non-leaf
nodes, which are located in the first half of the array.

@ The elements in the subarray A[|n/2| +1...n] are leaves and
are already valid 1-element heaps.

32/41

Building a Heap

Algorithm Build-Max-Heap(A, n)

: A.heap_size < n

: for i =|n/2] to 1 do
Max-Heapify(A, i)

end for

33/41

Analysis of Build-Max-Heap

@ A simple upper bound on the running time of
Build-Max-Heap:
o Each call to Max-Heapify takes O(log n) time.
o Build-Max-Heap makes O(n) calls to Max-Heapify.

@ Thus, the running time is O(nlog n).

@ However, this upper bound is not as tight as it can be.

34/41

Analysis of Build-Max-Heap

Tighter Asymptotic Bound for Build-Max-Heap

@ The time for Max-Heapify to run at a node depends on the
height of the node.

@ Most nodes in a heap are at lower heights, so they require less
time.

e Let this constant time be c.
e So time for node at height h = c- h.

@ The maximum height of an n-element heap is |log n|.
® At most Ny = [51| nodes have a height h.
e So we get: T(n) = ZUOgnJ Np-c-h

@ We need to approximate |x|(where x = Nj) in a way that
allows us to simplify the summation.

35/41

Analysis of Build-Max-Heap

Simplifying the Bound
@ Observation:
o [x] <2xforany x> 1

o To use this inequality, we need to ensure that: x = 57 > %
o For the range of h we are considering (0 < h < |log nj) x>1
is true.
e At h=0: 1
n n .
WZEEE since n>1
o At h = |log, n|:
n n n 1
2Meean 1 S gomn 123

@ Therefore, the approximation holds throughout the range of h
we are considering.
e Why is this important?
o Ensures Applicability: It allows us to safely apply the
inequality [x] < 2x because x meets the necessary condition.

o Applying the approximation: 57 <2 (2,%) = £

36/41

Analysis of Build-Max-Heap

Simplifying the Bound

37/41

Analysis of Build-Max-Heap

Key Takeaways

@ Build-Max-Heap constructs a max-heap from an unordered
array in linear time.

@ Although a naive analysis suggests O(nlog n), a tighter
analysis shows that the actual running time is O(n).

@ The tighter bound is achieved by considering the number of
nodes at each height and the time required for Max-Heapify
at each height.

38/41

Heap Sort: Algorithm

Algorithm Heap-Sort(A, n)

1: Build-Max-Heap(A, n)

2. for i =nto 2 do

3 Exchange A[1] with A[]

4: A.heap-size < A.heap-size — 1
5 Max-Heapify(A, 1)

6: end for

39/41

Heap Sort: Example

\ @ @
7/\3 ,»4/'\»'3\‘
@ 00 4/ \2 il»/ i@ 1/ \x2§ 8i
i (10 (14) (16) 10 (14) 16 10 (14) 16
() (@) ®
a >
2/ \3 :"7/ 7\1\ ’1/ 3)i
J C 2 ¢
fl,/ i) (8 9 il4 7 @ 9 4 7) (8 9
10 14 a6 10 14 16 10 14 (e
@ (h) @
®
i@ 3
i A [1]2]3]4]7]8]9[10]14]16]
4 @ @ 9
10 14 a6
[} (&)

40/ 41

Heap Sort: Analysis

@ The Heap-Sort algorithm takes O(nlog n) time, since the
call to Build-Max-Heap takes O(n) time and each of the
n — 1 calls to Max-Heapify takes O(log n) time.

41/41

