CS 2500: Algorithms

Lecture 11: Divide-and-Conquer: Merge Sort

Shubham Chatterjee
Missouri University of Science and Technology, Department of Computer Science

September 24, 2024

1/23

General Method

@ The divide-and-conquer strategy suggests splitting the inputs
into k distinct subsets, 1 < k < n, yielding k subproblems.

@ These subproblems must be solved, and a method must be
found to combine subsolutions into a solution of the whole.

@ If the subproblems are still relatively large, the
divide-and-conquer strategy can possibly be reapplied.

@ Often, the subproblems resulting from a divide-and-conquer
design are of the same type as the original subproblem.

@ For those cases, the reapplication of divide-and-conquer is
naturally expressed by a recursive algorithm.

@ Now, smaller and smaller subproblems of the same kind are

generated until eventually subproblems that are small enough
to be solved without splitting are produced.

2/23

Control Abstraction

@ We can write a control abstraction that mirrors the way an
algorithm based on divide-and-conquer will look.

@ Control abstraction: A procedure whose flow of control is
clear but whose primary operations are specified by other
procedures whose precise meanings are left undefined.

3/23

Control Abstraction

Algorithm DAndC(P)

if Small(P) then
return S(P)
else
Divide P into smaller instances Py, Ps, ..., Py, where
k>1
Apply DAndC to each of these subproblems
6: return Combine(DAndC(P;), DAndC(P), ...
DANndC(Py))
7: end if

R ME

&

4/23

Control Abstraction

@ Algorithm DAndC is initially invoked as DAndC(P) where P is
the problem to be solved.

@ The function Small (P) is a Boolean-valued function that
determines whether the input size is small enough that the
answer can be computed without splitting.

e If so, function S is invoked. Otherwise, the problem P is
divided into smaller subproblems.

@ These subproblems Py, P,, ..., P, are solved by recursive
applications of the divide-and-conquer method.

@ The function Combine is a function that determines the
solution to P using the solutions to the k subproblems.

5/23

Control Abstraction

The computing time of DAndC is described by the recurrence

relation:
T(n) = g(n) n smaIII
T(m)+ T(n)+...+ T(nk) + f(n) otherwise
where

@ T(n) is the time for DAndC on any input of size n.

@ g(n) is the time to compute the answer directly for small
inputs.

e f(n) is the time for dividing P and combining the solutions to
subproblems.

6/23

Recurrence Equation for Divide-and-Conquer Algorithms

The complexity of many divide-and-conquer algorithms is given by
recurrences of the form:

() = T(1) n=1
VT aT@) + f(n) n>1

@ a and b are known constants.

@ Assumptions:

o T(1) is known.
o nis a power of b (i.e., n = b¥).

7/23

Introduction
@ Merge Sort is an example of the divide-and-conquer approach.
@ The algorithm has a worst-case time complexity of O(nlog n).

@ We assume that the elements are to be sorted in
non-decreasing order.

8/23

Splitting and Merging
e Given a sequence of n elements a[l],..., a[n], the sequence is
split into two sets:

a[l],...,a[|n/2]] and a[|n/2] +1],...,a[n]

@ Each set is individually sorted, and then merged to form a
single sorted sequence of n elements.

9/23

Algorithm MergeSort(low, high)

// allow : high] is a global array to be sorted.
7/ Small(P) is true if there is only one element
7/ to sort. In this case the list is already sorted.

if (low < high) then // If there are more than one element

// Divide P into subproblems.

1/ Fmd where to split the set.
— [(low + high)/2};

// Solve u.e subproblems.
MergeSort(low, mid);
MergeSort(mid + 1, high);

// Combine the solutions.
Merge(low, mid, high);

Algorithm Merge(low, mid, high)

// allow : high] is a global array containing two sorted

// subsets i allow : mid) and i afmid + 1 highl. The goal
7/ is to merge these two sets inty ngle set residing

7/ in allow : high]. b]] is an auxiliary global array.

hi= lows i := low; j = mid + 1
while ((h < mid) and (j < high)) do

if (a[h] < a[j]) then

bli] = alhlsh = b+ 1;
else

biil =aljli i =5 +1;

}

1

i+1;

}
if (h > mid) then
for k= j to high do

bfi] = alk]; i =i + 15

e
for k := h to mid do

Bli] =

alksi=i+1;

for k:= low to high do a[k] := b[k;
}

10/23

Merge Sort: Tree Calls

- = —
LRI [2| 667 |
i3] 60 h |
Py T
= = o i
1,3 45 6.8 9,10 - - - I -
L8} 43 [63] s LI.ZJJ 445 [618 | 99.10
N N PN o L™ | A [Idslndll
|jm 55 [67] [88] [99] 10,14 . _ ~_ ~
o~ >~ =
/ -
i1)[22] 6 [135 68,10 |
15,00 |

Figure: MergeSort (1,10) Figure: Merge

11/23

Merge Sort: Time Complexity Analysis

We start with the recurrence relation:

2T (3)+n, n>1
T(”):{l # n=1

Now, iterating the recurrence:

n)_2T<)
=2(27(3)+3)+n
=227 (Z n+n

)+
—22< T("))+n+n
)+

=237 (n n+n+n

n

12/23

Merge Sort: Time Complexity Analysis

@ The stopping condition occurs when n=1. Then T(n) = 1.
o Putting ox =1, we get k = log, n and n = 2k,

@ From this we get:

T(n) :2kT(2£k) + kn
=n-T(1)+n-logyn
=n+nlogyn
= O(nlog, n)

13/23

Merge Sort: Space Complexity Analysis

Extra space:

@ Merge Sort requires additional space of 2n.

@ This space is needed because Merge Sort does not merge the
sorted subsets in place.

@ But despite this additional space, the algorithm must still
copy the result from b[low : high| to a[low : high] on each call
of Merge.

Solution: Associate a new field of information with each key. This
field is used to:

@ Link the keys and any associated information together in a
sorted list.

@ Change the link values, without moving records.

@ Use less space, as only links are updated, not the entire
records.

14/23

Merging with Link Array

Initial array: a[] = [60, 20, 40, 10, 30]

Links: 11nk[] = [0’ 1’ 2’

Merge Step Compared

Initial a[] N/A

values

1st merge Compare a[1] = 20 and
(left side) afe] = 5@

2nd merge Compare a[2] = 48 with
(left side) a[1] = 20 and a[e] = 5@
3rd merge Compare a[3] = 10 and
(right side) a[4] = 38

Final merge Compare a[3] = 10 with

a[1] = 20, then merge the

rest

3, 4]

Resulting
Link Array
[e, 1, 2,
4]
[1, e, 2,
4]
[1, 2, 8,
4]

Explanation

No sorting yet. 1ink[] refers to the

ariginal array.

Since 20 < 50, update 1ink[] to point
to a[1] first.

20 < 40 < 50, so 1link[] is updated to
reflect the sorted order: a[1], a[2].
afe] .

Since 10 < 30, the link array reflects this

order.

10 < 20 < 30 < 40 < 50, so the final

sorted order is reflected in 1ink[] .

15/23

Merging with Link Array

Initial Array and Link Array
o We start with the following array of elements:
a[] =[50, 20, 40, 10, 30]

@ The corresponding initial link array simply refers to the indices
of a[]:

link[] = [0,1,2,3,4]

@ Each entry in the 1ink[] array points to an element in a[].
For example, 1ink[0] points to a[0] = 50.

16/23

Merging with Link Array

Recursive Splitting in Merge Sort. Merge Sort first recursively
splits the array a[] into smaller subarrays:

o Left subarray: a[0:2] = [50, 20, 40]
@ Right subarray: a[3:4] = [10, 30]
These subarrays are further divided:
o Left subarray: Split into a[0] = 50, a[1] = 20, a[2] = 40.
o Right subarray: Split into a[3] = 10 and a[4] = 30.

17/23

Merging with Link Array

We begin merging individual elements back together, updating the
link array to reflect the correct sorted order.

1. Merge a[1] and a[0]:

o Compare a[1] = 20 and a[0] = 50.
e Since 20 j 50, update the 1ink[] array:

link[] = [1,0,2,3,4]

o Now, the link array points to the elements in the correct order
for the first two elements.

18/23

Merging with Link Array

2. Merge a[1:2] (sorted as [20, 50]) with a[2]:
o Compare a[2] = 40 with a[1] = 20 and then with a[0] =
50.
o The element 40 is smaller than 50 but larger than 20, so the
link array is updated:

link[] = [1,2,0,3,4]

o Now, the left subarray is fully sorted using the link array.

19/23

Merging with Link Array

3. Merge the right subarray a[3:4]:

o Compare a[3] = 10 with a[4] = 30.
e Since 10 j 30, update the link array:

link[] = [1,2,0,3,4]

e The right subarray is now correctly ordered as a[3] = 10 and
a[4] = 30, which are accessed using the link array.

20/23

Merging with Link Array

4. Final Merge of Left and Right Subarrays.

o Merge the left sorted subarray (1ink[0] = 1, link[1] = 2,
1ink[2] = 0) and the right sorted subarray (1ink[3] = 3,
link[4] = 4).

e Compare a[3] = 10 with a[1] = 20.

e Since 10 j 20, update the first entry in 1ink[]:

link[] = [3,1,2,0,4]

o Continue merging and comparing until the link array is
updated to reflect the fully sorted order:

link[] = [3,1,4,2,0]

21/23

Merging with Link Array

The final sorted order is accessed using the link array:

Sorted order from link[] = [10, 20, 30, 40, 50]

The link array now points to the elements in the correct sorted
order:

e a[link[0]] = a[3] =10

e a[link[1]] = a[1] =20

e a[link[2]] = a[4] = 30

e a[link[3]] = a[2] = 40

o a[link[4]] = a[0] =50
Thus, the final sorted order is: 10, 20, 30, 40, 50.

22/23

Merge Sort: Space Complexity Analysis

Another issue: Stack space needed due to recursion.

@ Each recursive call splits the input into two approximately
equal-sized subsets.

@ The maximum depth of the recursion is proportional to log n.

@ The need for stack space stems from the top-down nature of
the algorithm.

23/23

