
CS 2500: Algorithms
Lecture 11: Divide-and-Conquer: Merge Sort

Shubham Chatterjee

Missouri University of Science and Technology, Department of Computer Science

September 24, 2024

1 / 23

General Method

The divide-and-conquer strategy suggests splitting the inputs
into k distinct subsets, 1 < k ≤ n, yielding k subproblems.

These subproblems must be solved, and a method must be
found to combine subsolutions into a solution of the whole.

If the subproblems are still relatively large, the
divide-and-conquer strategy can possibly be reapplied.

Often, the subproblems resulting from a divide-and-conquer
design are of the same type as the original subproblem.

For those cases, the reapplication of divide-and-conquer is
naturally expressed by a recursive algorithm.

Now, smaller and smaller subproblems of the same kind are
generated until eventually subproblems that are small enough
to be solved without splitting are produced.

2 / 23

Control Abstraction

We can write a control abstraction that mirrors the way an
algorithm based on divide-and-conquer will look.

Control abstraction: A procedure whose flow of control is
clear but whose primary operations are specified by other
procedures whose precise meanings are left undefined.

3 / 23

Control Abstraction

Algorithm DAndC(P)

1: if Small(P) then
2: return S(P)
3: else
4: Divide P into smaller instances P1,P2, . . . ,Pk , where

k ≥ 1
5: Apply DAndC to each of these subproblems
6: return Combine(DAndC(P1), DAndC(P2), . . .,

DAndC(Pk))
7: end if

4 / 23

Control Abstraction

Algorithm DAndC is initially invoked as DAndC(P) where P is
the problem to be solved.

The function Small(P) is a Boolean-valued function that
determines whether the input size is small enough that the
answer can be computed without splitting.

If so, function S is invoked. Otherwise, the problem P is
divided into smaller subproblems.

These subproblems P1,P2, . . . ,Pk are solved by recursive
applications of the divide-and-conquer method.

The function Combine is a function that determines the
solution to P using the solutions to the k subproblems.

5 / 23

Control Abstraction

The computing time of DAndC is described by the recurrence
relation:

T (n) =

{
g(n) n small

T (n1) + T (n2) + . . .+ T (nk) + f (n) otherwise

where

T (n) is the time for DAndC on any input of size n.

g(n) is the time to compute the answer directly for small
inputs.

f (n) is the time for dividing P and combining the solutions to
subproblems.

6 / 23

Recurrence Equation for Divide-and-Conquer Algorithms

The complexity of many divide-and-conquer algorithms is given by
recurrences of the form:

T (n) =

{
T (1) n = 1

aT (nb) + f (n) n > 1

a and b are known constants.

Assumptions:

T (1) is known.
n is a power of b (i.e., n = bk).

7 / 23

Merge Sort

Introduction

Merge Sort is an example of the divide-and-conquer approach.

The algorithm has a worst-case time complexity of O(n log n).

We assume that the elements are to be sorted in
non-decreasing order.

8 / 23

Merge Sort

Splitting and Merging

Given a sequence of n elements a[1], . . . , a[n], the sequence is
split into two sets:

a[1], . . . , a[⌊n/2⌋] and a[⌊n/2⌋+ 1], . . . , a[n]

Each set is individually sorted, and then merged to form a
single sorted sequence of n elements.

9 / 23

Merge Sort

10 / 23

Merge Sort: Tree Calls

Figure: MergeSort(1,10) Figure: Merge

11 / 23

Merge Sort: Time Complexity Analysis

We start with the recurrence relation:

T (n) =

{
2T

(
n
2

)
+ n, n > 1

1, n = 1

Now, iterating the recurrence:

T (n) = 2T
(n
2

)
+ n

= 2
(
2T

(n
4

)
+

n

2

)
+ n

= 22T
(n
4

)
+ n + n

= 22
(
2T

(n
8

)
+

n

4

)
+ n + n

= 23T
(n
8

)
+ n + n + n

...

= 2kT
(n

2k

)
+ kn

12 / 23

Merge Sort: Time Complexity Analysis

The stopping condition occurs when n = 1. Then T (n) = 1.

Putting n
2k

= 1, we get k = log2 n and n = 2k .

From this we get:

T (n) = 2kT
(n

2k

)
+ kn

= n · T (1) + n · log2 n
= n + n log2 n

= O(n log2 n)

13 / 23

Merge Sort: Space Complexity Analysis

Extra space:

Merge Sort requires additional space of 2n.

This space is needed because Merge Sort does not merge the
sorted subsets in place.

But despite this additional space, the algorithm must still
copy the result from b[low : high] to a[low : high] on each call
of Merge.

Solution: Associate a new field of information with each key. This
field is used to:

Link the keys and any associated information together in a
sorted list.

Change the link values, without moving records.

Use less space, as only links are updated, not the entire
records.

14 / 23

Merging with Link Array

Initial array: a[] = [50, 20, 40, 10, 30]

Links: link[] = [0, 1, 2, 3, 4]

15 / 23

Merging with Link Array

Initial Array and Link Array

We start with the following array of elements:

a[] = [50, 20, 40, 10, 30]

The corresponding initial link array simply refers to the indices
of a[]:

link[] = [0, 1, 2, 3, 4]

Each entry in the link[] array points to an element in a[].
For example, link[0] points to a[0] = 50.

16 / 23

Merging with Link Array

Recursive Splitting in Merge Sort. Merge Sort first recursively
splits the array a[] into smaller subarrays:

Left subarray: a[0:2] = [50, 20, 40]

Right subarray: a[3:4] = [10, 30]

These subarrays are further divided:

Left subarray: Split into a[0] = 50, a[1] = 20, a[2] = 40.

Right subarray: Split into a[3] = 10 and a[4] = 30.

17 / 23

Merging with Link Array

We begin merging individual elements back together, updating the
link array to reflect the correct sorted order.

1. Merge a[1] and a[0]:

Compare a[1] = 20 and a[0] = 50.
Since 20 ¡ 50, update the link[] array:

link[] = [1, 0, 2, 3, 4]

Now, the link array points to the elements in the correct order
for the first two elements.

18 / 23

Merging with Link Array

2. Merge a[1:2] (sorted as [20, 50]) with a[2]:

Compare a[2] = 40 with a[1] = 20 and then with a[0] =

50.
The element 40 is smaller than 50 but larger than 20, so the
link array is updated:

link[] = [1, 2, 0, 3, 4]

Now, the left subarray is fully sorted using the link array.

19 / 23

Merging with Link Array

3. Merge the right subarray a[3:4]:

Compare a[3] = 10 with a[4] = 30.
Since 10 ¡ 30, update the link array:

link[] = [1, 2, 0, 3, 4]

The right subarray is now correctly ordered as a[3] = 10 and
a[4] = 30, which are accessed using the link array.

20 / 23

Merging with Link Array

4. Final Merge of Left and Right Subarrays.

Merge the left sorted subarray (link[0] = 1, link[1] = 2,
link[2] = 0) and the right sorted subarray (link[3] = 3,
link[4] = 4).
Compare a[3] = 10 with a[1] = 20.
Since 10 ¡ 20, update the first entry in link[]:

link[] = [3, 1, 2, 0, 4]

Continue merging and comparing until the link array is
updated to reflect the fully sorted order:

link[] = [3, 1, 4, 2, 0]

21 / 23

Merging with Link Array

The final sorted order is accessed using the link array:

Sorted order from link[] = [10, 20, 30, 40, 50]

The link array now points to the elements in the correct sorted
order:

a[link[0]] = a[3] = 10

a[link[1]] = a[1] = 20

a[link[2]] = a[4] = 30

a[link[3]] = a[2] = 40

a[link[4]] = a[0] = 50

Thus, the final sorted order is: 10, 20, 30, 40, 50.

22 / 23

Merge Sort: Space Complexity Analysis

Another issue: Stack space needed due to recursion.

Each recursive call splits the input into two approximately
equal-sized subsets.

The maximum depth of the recursion is proportional to log n.

The need for stack space stems from the top-down nature of
the algorithm.

23 / 23

