
CS 2500: Algorithms
Lecture 10: Program Correctness and Sorting: Part II

Shubham Chatterjee

Missouri University of Science and Technology, Department of Computer Science

September 19, 2024

1 / 40



Overview of Selection Sort

Selection Sort is a comparison-based algorithm.

It divides the input list into two parts:
1 A sorted sublist of items which is built up from left to right.
2 A sublist of the remaining unsorted items.

The algorithm repeatedly selects the smallest element from
the unsorted sublist, swaps it with the leftmost unsorted
element, and moves the boundary between sorted and
unsorted sublists by one element.

2 / 40



Selection Sort Algorithm

Algorithm:

1 Start with the first element (index 0) and assume it’s the
smallest.

2 Compare this element with the rest of the array to find the
actual smallest element.

3 Swap the smallest element with the element at index 0.

4 Move to the next element and repeat the process for the
remaining array.

5 Continue until the entire array is sorted.

3 / 40



Example: Selection Sort

Array: [29, 10, 14, 37, 14]

1 Find the minimum element in the array [29, 10, 14, 37, 14].
Minimum is 10.

2 Swap 10 with the first element (29): [10, 29, 14, 37, 14].

3 Find the minimum element in the remaining array [29, 14, 37,
14]. Minimum is 14.

4 Swap 14 with the second element (29): [10, 14, 29, 37, 14].

5 Repeat this process.

4 / 40



Selection Sort Algorithm

Algorithm SelectionSort(arr)

1: n← length of arr
2: for i = 0 to n − 1 do ▷ Outer Loop
3: min index ← i ▷ Assume i is the smallest
4: for j = i + 1 to n − 1 do ▷ Find the minimum

element
5: if arr [j ] < arr [min index ] then
6: min index ← j
7: end if
8: end for
9: Swap arr [i ] and arr [min index ] ▷ Place minimum at

i
10: end for

5 / 40



Time Complexity

Best Case: O(n2)
Even in the best case, Selection Sort performs O(n2)
comparisons.

Worst Case: O(n2)
The algorithm always goes through (n − 1) comparisons for
each element.

Space Complexity: O(1)
Selection Sort is an in-place sorting algorithm, requiring no
additional memory for arrays.

6 / 40



Properties of Selection Sort

Stable: No, because equal elements may be swapped in the
process.

In-Place: Yes, it uses constant extra memory.

Adaptive: No, it always performs the same number of
comparisons, regardless of the initial order of elements.

Suitability: Good for small arrays where memory is a
constraint, but inefficient for larger datasets.

7 / 40



Advantages and Disadvantages

Advantages:

Simple to implement.

Does not require extra memory, making it suitable for
memory-constrained environments.

Disadvantages:

Inefficient for large lists due to its time complexity of O(n2).
The algorithm does not adapt to the initial order of the
elements.

8 / 40



Conclusion

Selection Sort is a simple and intuitive algorithm.

It is efficient for small data sets but not recommended for
larger ones due to its time complexity.

It provides insight into basic sorting mechanisms and helps
understand more advanced sorting algorithms.

9 / 40



Insertion Sort

Intuition:

Insertion Sort is similar to how you sort a hand of playing
cards.

You pick one card at a time and insert it into its correct
position in an already sorted hand.

The process is repeated for each new card until the entire
hand is sorted.

Key Idea: As you add more cards, the left side of the hand is
always sorted, and the right side contains the new unsorted cards.

10 / 40



Insertion Sort: Example

Figure: Visualization of Insertion Sort

11 / 40



Insertion Sort Algorithm

Algorithm:

Algorithm InsertionSort(arr)

1: n← length of arr
2: for i = 2 to n do
3: key ← arr [i ]
4: j ← i − 1
5: while j > 0 and arr [j ] > key do
6: arr [j + 1]← arr [j ] ▷ Shift larger elements right
7: j ← j − 1
8: end while
9: arr [j + 1]← key ▷ Insert the key at correct position

10: end for

12 / 40



Time Complexity of Insertion Sort

Best Case: O(n) when the array is already sorted.

Worst Case: O(n2) when the array is sorted in reverse order.

Average Case: O(n2).
Space Complexity: O(1), as it only uses constant extra
memory.

13 / 40



Properties of Insertion Sort

Stable: Yes, equal elements are not swapped.

In-Place: Yes, it uses constant extra memory.

Adaptive: Yes, it becomes faster if the input is already
partially sorted.

14 / 40



Advantages and Disadvantages of Insertion Sort

Advantages:

Simple and intuitive to implement.

Efficient for small or nearly sorted arrays.

Minimal overhead and good for systems with memory
constraints.

Disadvantages:

Inefficient for large datasets due to its O(n2) time complexity.

Comparisons increase significantly as array size grows.

15 / 40



Conclusion

Insertion Sort is a straightforward algorithm, best suited for
small or partially sorted datasets.

It works well in scenarios where the list is almost sorted or for
small datasets.

More efficient sorting algorithms like Merge Sort or Quick Sort
are preferred for large datasets.

16 / 40



Loop Invariants and Algorithm Correctness

A loop invariant is a condition that holds true before and after
each iteration of a loop.

To prove an algorithm correct using a loop invariant, we need
to prove:

Initialization: The loop invariant is true before the first
iteration.
Maintenance: If it is true before an iteration of the loop, it
remains true before the next iteration.
Termination: The loop terminates, and the invariant gives a
useful property to show that the algorithm is correct.

The proof is analogous to mathematical induction: prove a
base case (Initialization) and an inductive step (Maintenance).

17 / 40



Proof of Correctness: Insertion Sort

Problem. Use the loop-invariant method to show that the
algorithm for Insertion Sort is correct.

18 / 40



Proof of Correctness: Insertion Sort

Initialization

We start by showing that the loop invariant holds before the
first loop iteration when i = 2. The subarray A[1 . . . i − 1]
consists of just the first element A[1].

This subarray is trivially sorted since it contains only one
element.

Therefore, the loop invariant holds true before the first
iteration.

19 / 40



Proof of Correctness: Insertion Sort

Maintenance

Assume the loop invariant holds for i = k , meaning
A[1..k − 1] is sorted.

The inner while loop shifts elements greater than A[k] to the
right, making space to insert A[k] in the correct position.

After insertion, A[1..k] is sorted, so the invariant is
maintained.

20 / 40



Proof of Correctness: Insertion Sort

Termination

The loop terminates when i exceeds n (i.e., when i = n + 1).

At this point, the subarray A[1 . . . n] is sorted because the
entire array has been processed.

Since the loop invariant holds after the final iteration, the
array is fully sorted when the loop terminates.

This proves that the algorithm is correct.

21 / 40



Proof of Correctness: Insertion Sort

Conclusion

Loop invariants provide a formal method to prove the
correctness of algorithms.

For Insertion Sort, we demonstrated correctness by proving:

The loop invariant holds at initialization.
It is maintained through each iteration.
At termination, the invariant ensures the entire array is sorted.

This method of proof is useful for analyzing many types of
iterative algorithms.

22 / 40



Proof of Correctness: Selection Sort

Initialization

Before the first iteration (i = 0), the subarray arr [0..n − 1] is
empty, which is trivially sorted.

Therefore, the loop invariant holds before the first iteration.

23 / 40



Proof of Correctness: Selection Sort

Maintenance

Assume the loop invariant holds at the start of iteration i .

The inner loop finds the minimum element in the subarray
arr [i ..n − 1].

This element is swapped with arr [i ], making arr [0..i ] sorted
with the smallest i + 1 elements.

Thus, the invariant is maintained after each iteration.

24 / 40



Proof of Correctness: Selection Sort

Termination

When the outer loop finishes, i = n, and the invariant implies
that the subarray arr [0..n − 1] contains all elements in sorted
order.

Therefore, the array is fully sorted, proving the correctness of
the Selection Sort algorithm.

25 / 40



Proof of Correctness: Selection Sort

Conclusion

The loop invariant holds at initialization, is maintained
throughout, and ensures correctness at termination.

Therefore, the Selection Sort algorithm is correct.

26 / 40



Proof of Correctness: Bubble Sort

Initialization

Before the first iteration (i = 0), no elements are considered
to be sorted, which is trivially true since no swaps have been
made yet.

Therefore, the loop invariant holds before the first iteration.

27 / 40



Proof of Correctness: Bubble Sort

Maintenance

Assume the loop invariant holds at the start of iteration i .

The inner loop moves the largest unsorted element to its
correct position at the end of the array.

Thus, after each iteration of the outer loop, the last i
elements are correctly sorted and are the largest elements.

28 / 40



Proof of Correctness: Bubble Sort

Termination

When the outer loop finishes, i = n, meaning the entire array
is sorted.

Therefore, the array is fully sorted, proving the correctness of
the Bubble Sort algorithm.

29 / 40



Proof of Correctness: Bubble Sort

Conclusion

The loop invariant holds at initialization, is maintained
throughout, and ensures correctness at termination.

Therefore, the Bubble Sort algorithm is correct.

30 / 40



Proof of Correctness: Binary Search

Algorithm BinarySearch(arr, x)

1: low ← 0
2: high← length of arr − 1
3: while low ≤ high do
4: mid ← (low + high)÷ 2
5: if arr [mid ] = x then
6: return mid ▷ Found the target
7: else if arr [mid ] < x then
8: low ← mid + 1 ▷ Search right half
9: else

10: high← mid − 1 ▷ Search left half
11: end if
12: end while
13: return -1 ▷ Target not found

31 / 40



Proof of Correctness: Binary Search

Initialization

Initially, low = 0 and high = n − 1, so the subarray
arr [low ..high] is the entire array.

If x is present, it must be in this subarray.

Therefore, the loop invariant holds before the first iteration.

32 / 40



Proof of Correctness: Binary Search

Maintenance

At each iteration, we compare arr [mid ] with x .

If arr [mid ] < x , we set low = mid + 1, reducing the search
space to arr [mid + 1..high].

If arr [mid ] > x , we set high = mid − 1, reducing the search
space to arr [low ..mid − 1].

In both cases, if x is present, it must still be within the
updated subarray, maintaining the loop invariant.

33 / 40



Proof of Correctness: Binary Search

Termination

The loop terminates when low > high. At this point, if x was
found, it was returned; otherwise, the algorithm correctly
concludes that x is not present.

Therefore, the algorithm is correct.

34 / 40



Proof of Correctness: Binary Search

Conclusion

The loop invariant holds at initialization, is maintained
throughout, and ensures correctness at termination.

Therefore, the Binary Search algorithm is correct.

35 / 40



Proof of Correctness: GCD

Algorithm GCD(a, b)

1: while b ̸= 0 do
2: temp ← b
3: b ← a mod b ▷ Remainder of a divided by b
4: a← temp
5: end while
6: return a ▷ a now contains the GCD of the original a

and b

36 / 40



Proof of Correctness: GCD

Initialization

Before the first iteration, the values of a and b are the original
inputs.

Since gcd(a, b) = gcd(a, b), the loop invariant trivially holds.

37 / 40



Proof of Correctness: GCD

Maintenance

At each iteration, we update b to a%b and a to the previous
value of b.

By the properties of the GCD, gcd(a, b) remains the same
after this transformation.

Therefore, the loop invariant is maintained.

38 / 40



Proof of Correctness: GCD

Termination

The loop terminates when b = 0. At this point, gcd(a, 0) = a,
and by the loop invariant, a contains the greatest common
divisor of the original input values.

Therefore, the algorithm is correct.

39 / 40



Proof of Correctness: GCD

Conclusion

The loop invariant holds at initialization, is maintained
throughout, and ensures correctness at termination.

Therefore, the Euclidean Algorithm for GCD is correct.

40 / 40


