
Logistics
Introduction to Algorithm Analysis

CS 2500: Algorithms
Lecture 1: Introduction and Logistics

Shubham Chatterjee

Missouri University of Science and Technology, Department of Computer Science

August 19, 2024

1 / 45

Logistics
Introduction to Algorithm Analysis

About Me

Dr. Shubham Chatterjee
Assistant Professor

Research Interests: Neural IR, LLMs,
Conversational AI.
Previously: University of Edinburgh, UK.
PhD: University of New Hampshire,
Durham, USA.

2 / 45

Logistics
Introduction to Algorithm Analysis

Teaching Assistant

Priyesh Ranjan
Ph.D. Student

Research Interests. Federated learn-
ing and attacker detection in federated
learning setups, time series data analy-
sis, and healthcare data analytics using
neural networks.

3 / 45

Logistics
Introduction to Algorithm Analysis

Learning Objectives

Analyze the asymptotic performance of algorithms in terms of
runtime and storage memory.

Write rigorous correctness proofs for algorithms.

Demonstrate a familiarity with major algorithms.

Apply important algorithmic design paradigms and methods of
analysis.

Synthesize efficient algorithms in common engineering design
situations.

4 / 45

Logistics
Introduction to Algorithm Analysis

Student Outcomes

Argue the correctness of algorithms using inductive proofs and
invariants.

Analyze worst-case runtime of algorithms in asymptotic
notation.

Employ the divide-and-conquer paradigm to design algorithms
when a problem calls for it and evaluate their performance by
solving recurrences.

Use graphs to model engineering problems, when appropriate,
and perform graph search.

Design greedy algorithms to solve sequential decision
problems efficiently.

Design dynamic programming algorithms to solve sequential
decision problems optimally using value iteration.

Identify computationally hard problems and design tractable,
approximate algorithms.

5 / 45

Logistics
Introduction to Algorithm Analysis

Taxonomy of Learning Objectives in Cognitive Domain

6 / 45

Logistics
Introduction to Algorithm Analysis

Grading Information

Components:
Weekly homework assignments. [40%]

Problems + coding.
Released every Tuesday.
Due next Tuesday.
No homework this week!

1 midterm examination. [20%]

1 final comprehensive examination. [20%]

Recitations. [20%]

Final Grade:

[90− 100]: A

[80− 90): B

[70− 80): C

[60− 70): D

< 60: F
7 / 45

Logistics
Introduction to Algorithm Analysis

Mutual Expectations: Students

Students are expected to:

Be present in class (physically and mentally).

Ask at least one question every session.

Present homework solutions.

Do their own work and contribute significantly in team
activities.

Study and repeat necessary class materials independently.

8 / 45

Logistics
Introduction to Algorithm Analysis

Mutual Expectations: Instructor

The instructor is expected to:

Make lecture notes available before the class.

Return graded homework in a timely manner.

Be available for questions regarding class material during
class, online, and if necessary by appointment.

Notify students that are in danger of not meeting the class
goals early on.

Provide ungraded test exams (quizzes) for students’
self-assessment.

9 / 45

Logistics
Introduction to Algorithm Analysis

A Note on Expectations

It is not sufficient to just be present in class and submit
homework.

Obtaining an A requires that you study and review materials
from lecture notes, assignments, and discussions with the help
of the book.

If stuck, please see the instructor.

10 / 45

Logistics
Introduction to Algorithm Analysis

Prerequisites for this Course (Required)

Before taking this algorithms class, students should have
completed the following courses or have equivalent knowledge:

Discrete Mathematics
Logic, sets, relations, functions, combinatorics, graph theory,
proof techniques.
Importance: Provides the mathematical foundation for
analyzing algorithms.

Data Structures
Arrays, linked lists, stacks, queues, trees, graphs, hash tables,
heaps.
Importance: Understanding of data structures is crucial for
algorithm design.

Introduction to Programming
Basic programming concepts, control structures, functions,
recursion.
Importance: Comfort with writing and debugging code is
necessary for implementing algorithms.

11 / 45

Logistics
Introduction to Algorithm Analysis

Prerequisites for this Course (Optional but Recommended)

Before taking this algorithms class, students are recommended to
complete the following courses or have equivalent knowledge:

Basic Calculus
Limits, derivatives, integrals, sequences.
Importance: Useful for understanding growth rates in
algorithmic analysis.

Basic Probability and Statistics
Probability theory, random variables, distributions, expectation,
variance.
Importance: Helpful for analyzing algorithms with randomness
or probabilistic analysis.

12 / 45

Logistics
Introduction to Algorithm Analysis

Definition of an Algorithm

Definition: An algorithm is a finite set of instructions that, if
followed, accomplishes a particular task. In addition, it must meet
the following criteria:

Input: Takes zero or more inputs.

Output: Produces at least one output.

Definiteness: Each instruction must be clear and
unambiguous.

Finiteness: The algorithm should terminate after a finite
number of steps.

Effectiveness: Any instruction should be basic enough to be
performed, ideally by a person using pencil and paper.

13 / 45

Logistics
Introduction to Algorithm Analysis

Example: Making a Cup of Tea

Let’s consider the steps to make a cup of tea as an example of an
algorithm:

Input:
Water
Tea leaves or a tea bag
A cup
Sugar (optional)
Milk (optional)

Output: A prepared cup of tea.

Definiteness: Each step is clear and unambiguous:

Boil water.
Add tea leaves or a tea bag to the cup.
Pour boiling water into the cup.
Steep for 3-5 minutes.
Add sugar and milk if desired.
Stir and serve.

14 / 45

Logistics
Introduction to Algorithm Analysis

Example: Making a Cup of Tea

Finiteness: The algorithm has a finite number of steps and
will terminate once the tea is made.

Effectiveness: Each step is simple enough to be performed
by a person using basic tools (e.g., a kettle, a spoon).

15 / 45

Logistics
Introduction to Algorithm Analysis

Focus Areas

1 How to devise algorithms?
Divide and Conquer
Greedy Algorithms
Dynamic Programming
Backtracking
Branch and Bound

2 How to validate algorithms?
Check if the algorithm is correct.

3 Performance Analysis
Time complexity
Space complexity

4 How to test algorithms?
Debugging
Profiling

16 / 45

Logistics
Introduction to Algorithm Analysis

Performance Analysis

Space Complexity: The amount of memory an algorithm takes to
run to completion.

The space S(P) required consists of two parts:
1 Fixed part (C): Independent of input size, e.g., instruction

space, space for constants.
2 Variable part (Sp): Space needed for variables.

S(P) = C + Sp

Time Complexity: The amount of computational time an
algorithm takes to run to completion.

17 / 45

Logistics
Introduction to Algorithm Analysis

Space Complexity Example

Example 1:

Algorithm abc(a, b, c)

1: return (a+ b + c)

Space Complexity: Sp = 0 (Fixed part only)

18 / 45

Logistics
Introduction to Algorithm Analysis

Space Complexity Example

Example 2:

Algorithm Sum(a, n)

1: s ← 0
2: for i ← 1 to n do
3: s ← s + a[i]
4: end for
5: return s

Space Complexity:

Variables: s, i , n, a[i]

Fixed part: s, i , n which occupy 3 bytes (1 byte each).

S(P) = 3 + n (Fixed part + Variable part)

19 / 45

Logistics
Introduction to Algorithm Analysis

Time Complexity: Finding a Book in a Library

Imagine you are in a library with 1,000 books, and you need to find
a specific book.

20 / 45

Logistics
Introduction to Algorithm Analysis

Method 1: Checking Each Book Individually

Go book by book.

Start with the first book, check if it’s the one, then move on
to the next, and so on.

This approach is more straightforward: you check each book
once.

Summary

You perform a linear search, going through the books one by
one.

21 / 45

Logistics
Introduction to Algorithm Analysis

Method 2: Dividing and Conquering the Search

The books are arranged alphabetically by title.

Go to the middle of the library and check if the book is to the
left or right.

Continue dividing the number of books you’re searching
through until you find the book.

Summary

You efficiently narrow down the search by repeatedly halving
the number of books to check.

22 / 45

Logistics
Introduction to Algorithm Analysis

From Intuition to Formalism

We’ve seen different ways to search for a book, with varying
levels of efficiency.

How can we formalize these observations to compare them
more easily?

Let’s introduce a tool to describe and compare these methods:
a formal notation.

23 / 45

Logistics
Introduction to Algorithm Analysis

The Role of Input Size

In general, we are not so much interested in the time and
space complexity for small inputs.

For example, while the difference in time complexity between
linear (method 1) and binary (method 2) search is meaningless
for a sequence with n = 10, it is gigantic for n = 230.

24 / 45

Logistics
Introduction to Algorithm Analysis

The Role of Input Size

Question

Let us assume two algorithms A and B that solve the same
class of problems.

The time complexity of A is 5000n, the one for B is
1.1n for an input with n elements.

For n = 10, A requires 50, 000 steps, but B only 3, so
B is superior to A.

Is this true or false? Justify your answer.

25 / 45

Logistics
Introduction to Algorithm Analysis

The Role of Input Size

Answer: False

For n = 1000, A requires 5, 000, 000 steps, while B
requires 2.5× 1041 steps.

While B appears better for small n, as n grows, A
becomes far more efficient.

This demonstrates the importance of understanding
how algorithms scale with input size.

26 / 45

Logistics
Introduction to Algorithm Analysis

The Role of Input Size

27 / 45

Logistics
Introduction to Algorithm Analysis

The Role of Input Size

This means that algorithm B cannot be used for large inputs,
while algorithm A is still feasible.

So what is important is the growth of the complexity
functions.

The growth of time and space complexity with the increasing
input size n is a suitable measure for the comparison of
algorithms.

28 / 45

Logistics
Introduction to Algorithm Analysis

The Growth of Functions: Big-O Notation

The growth of functions is usually described using the Big-O
notation.

Big-O Notation is a way to describe the efficiency of an
algorithm in terms of how it scales with input size.

It helps us categorize algorithms and understand their
behavior as the problem size grows.

29 / 45

Logistics
Introduction to Algorithm Analysis

Big-O Notation

Big-O: Let f and g be functions from the integers or the real
numbers to the real numbers. The function f (n) is O(g(n)) if
there exist positive constants C and k such that:

|f (n)| ≤ C · |g(n)| for all n > k

Example:
f (n) = 3n2 + 2 is O(n2)

Common Time Complexities:

O(1) – Constant computing time

O(n) – Linear computing time

O(n2) – Quadratic computing time

O(2n) – Exponential computing time

30 / 45

Logistics
Introduction to Algorithm Analysis

Big-O Notation

When we analyze the growth of complexity functions, f (n)
and g(n) are always positive. (Homework: Why?)

We can simplify the Big-O requirement to:

f (n) ≤ C · g(n) whenever n > k

To show that f (n) is O(g(n)), we only need to find one pair
(C , k).

31 / 45

Logistics
Introduction to Algorithm Analysis

Example: Showing f (n) = 3n + 2 is O(n)

Let f (n) = 3n + 2 and g(n) = n.

Choose C = 4 and k = 1.

For n > 1, 3n + 2 ≤ 4n, so f (n) is O(n).

See the Visualization in Action:
Click Here to View the Animation

32 / 45

https://drive.google.com/file/d/1bt1SHknYGDEzw3-z9GuyZQlaEnQmwY21/view?usp=sharing

Logistics
Introduction to Algorithm Analysis

Big-O Notation

The idea behind the Big-O notation is to establish an upper
boundary for the growth of a function f (n) for large n.

This boundary is specified by a function g(n) that is usually
much simpler than f (n).

We accept the constant C in the requirement f (n) ≤ C · g(n)
whenever n > k , because C does not grow with n.

We are only interested in large n, so it is OK if
f (n) > C · g(n) for n ≤ k . (Homework: Why?)

33 / 45

Logistics
Introduction to Algorithm Analysis

Big-O Notation

Figure: Plot for Big-O

34 / 45

Logistics
Introduction to Algorithm Analysis

Big-O: Example

Question

Show that f (n) = n2 + 2n + 1 is O(n2).

35 / 45

Logistics
Introduction to Algorithm Analysis

Big-O: Example

Solution

For n > 1, we have:

n2 + 2n + 1 ≤ n2 + 2n2 + n2

⇒ n2 + 2n + 1 ≤ 4n2

Therefore, for C = 4 and k = 1:

f (n) ≤ 4n2 whenever n > 1

⇒ f (n) is O(n2).

See the Visualization in Action:
Click Here to View the Animation

36 / 45

https://drive.google.com/file/d/1EqpBNqZ16xifOS1X4LyoQUTOAHDh_LTo/view?usp=sharing

Logistics
Introduction to Algorithm Analysis

Properties of Big-O Notation

Reflexivity: For any function f (n), f (n) = O(f (n)).

Example

If f (n) = n2, then f (n) = O(n2).

37 / 45

Logistics
Introduction to Algorithm Analysis

Properties of Big-O Notation

Transitivity: If f (n) = O(g(n)) and g(n) = O(h(n)), then
f (n) = O(h(n)).

Example

If f (n) = n3, g(n) = n2, h(n) = n4, then:

f (n) = O(g(n))

g(n) = O(h(n))

Therefore, f (n) = O(h(n))

38 / 45

Logistics
Introduction to Algorithm Analysis

Properties of Big-O Notation

Constant Factor: For any constant c > 0 and functions f (n) and
g(n), if f (n) = O(g(n)), then cf (n) = O(g(n)).

Example

If f (n) = n, g(n) = n2, then:

f (n) = O(g(n))

Therefore, 2f (n) = O(g(n))

39 / 45

Logistics
Introduction to Algorithm Analysis

Properties of Big-O Notation

Sum Rule: If f (n) = O(g(n)) and h(n) = O(g(n)), then
f (n) + h(n) = O(g(n)).

Example

If f (n) = n2, g(n) = n3, h(n) = n4, then:

f (n) = O(g(n))

h(n) = O(g(n))

Therefore, f (n) + h(n) = O(g(n))

40 / 45

Logistics
Introduction to Algorithm Analysis

Properties of Big-O Notation

Product Rule: If f (n) = O(g(n)) and h(n) = O(k(n)), then
f (n)× h(n) = O(g(n)× k(n)).

Example

If f (n) = n, g(n) = n2, h(n) = n3, k(n) = n4, then:

f (n) = O(g(n))

h(n) = O(k(n))

Therefore, f (n)× h(n) = O(g(n)× k(n)) = O(n5)

41 / 45

Logistics
Introduction to Algorithm Analysis

Properties of Big-O Notation

Composition Rule: If f (n) = O(g(n)) and g(n) = O(h(n)), then
f (g(n)) = O(h(n)).

Example

If f (n) = n2, g(n) = n, h(n) = n3, then:

f (n) = O(g(n))

g(n) = O(h(n))

Therefore, f (g(n)) = O(h(n)) = O(n3)

42 / 45

Logistics
Introduction to Algorithm Analysis

Common Functions in Big-O Notation

Popular functions g(n) are n log n, 1, 2n, n2, n!, n, n3, log n.

Listed from slowest to fastest growth:

1
log n
n
n log n
n2

n3

2n

n!

43 / 45

Logistics
Introduction to Algorithm Analysis

Steps to Determine Big-O Notation

1 Identify the Dominant Term:
Examine the function and identify the term with the highest
order of growth as the input size increases.
Ignore any constant factors or lower-order terms.

2 Determine the Order of Growth:
The order of growth of the dominant term determines the
Big-O notation.

3 Write the Big-O Notation:
The Big-O notation is written as O(f (n)), where f (n)
represents the dominant term.
For example, if the dominant term is n2, the Big-O notation
would be O(n2).

4 Simplify the Notation (Optional):
In some cases, the Big-O notation can be simplified by
removing constant factors or by using a more concise notation.
For instance, O(2n) can be simplified to O(n).

44 / 45

Logistics
Introduction to Algorithm Analysis

Example: Determining Big-O Notation

Example

Function: f (n) = 3n3 + 2n2 + 5n + 1

1 Dominant Term: 3n3

2 Order of Growth: Cubic (n3)

3 Big-O Notation: O(n3)

4 Simplified Notation: O(n3)

45 / 45

	Logistics
	Introduction to Algorithm Analysis

