CS 2500: Algorithms Lecture 1: Introduction and Logistics

Shubham Chatterjee

Missouri University of Science and Technology, Department of Computer Science

August 19, 2024

イロト 不同 とくほと 不良とう ほ

1/45

About Me

Dr. Shubham Chatterjee Assistant Professor

Research Interests: Neural IR, LLMs, Conversational AI.

Previously: University of Edinburgh, UK. **PhD:** University of New Hampshire, Durham, USA.

Teaching Assistant

Priyesh Ranjan Ph.D. Student

Research Interests. Federated learning and attacker detection in federated learning setups, time series data analysis, and healthcare data analytics using neural networks.

Learning Objectives

- Analyze the asymptotic performance of algorithms in terms of runtime and storage memory.
- Write rigorous correctness proofs for algorithms.
- Demonstrate a familiarity with major algorithms.
- Apply important algorithmic design paradigms and methods of analysis.
- Synthesize efficient algorithms in common engineering design situations.

Student Outcomes

- Argue the correctness of algorithms using inductive proofs and invariants.
- Analyze worst-case runtime of algorithms in asymptotic notation.
- Employ the divide-and-conquer paradigm to design algorithms when a problem calls for it and evaluate their performance by solving recurrences.
- Use graphs to model engineering problems, when appropriate, and perform graph search.
- Design greedy algorithms to solve sequential decision problems efficiently.
- Design dynamic programming algorithms to solve sequential decision problems optimally using value iteration.
- Identify computationally hard problems and design tractable, approximate algorithms.

Taxonomy of Learning Objectives in Cognitive Domain

Grading Information

Components:

- Weekly homework assignments. [40%]
 - Problems + coding.
 - Released every Tuesday.
 - Due next Tuesday.
 - No homework this week!
- 1 midterm examination. [20%]
- 1 final comprehensive examination. [20%]
- Recitations. [20%]

Final Grade:

- [90 100]: A
- [80 90): B
- [70 80): C
- [60 70): D
- < 60: F

Mutual Expectations: Students

Students are expected to:

- Be present in class (physically and mentally).
- Ask at least one question every session.
- Present homework solutions.
- Do their own work and contribute significantly in team activities.
- Study and repeat necessary class materials independently.

Mutual Expectations: Instructor

The instructor is expected to:

- Make lecture notes available before the class.
- Return graded homework in a timely manner.
- Be available for questions regarding class material during class, online, and if necessary by appointment.
- Notify students that are in danger of not meeting the class goals early on.
- Provide ungraded test exams (quizzes) for students' self-assessment.

A Note on Expectations

- It is not sufficient to just be present in class and submit homework.
- Obtaining an A requires that you study and review materials from lecture notes, assignments, and discussions with the help of the book.
- If stuck, please see the instructor.

Prerequisites for this Course (Required)

Before taking this algorithms class, students should have completed the following courses or have equivalent knowledge:

• Discrete Mathematics

- Logic, sets, relations, functions, combinatorics, graph theory, proof techniques.
- Importance: Provides the mathematical foundation for analyzing algorithms.

• Data Structures

- Arrays, linked lists, stacks, queues, trees, graphs, hash tables, heaps.
- Importance: Understanding of data structures is crucial for algorithm design.
- Introduction to Programming
 - Basic programming concepts, control structures, functions, recursion.
 - Importance: Comfort with writing and debugging code is necessary for implementing algorithms.

Prerequisites for this Course (Optional but Recommended)

Before taking this algorithms class, students are recommended to complete the following courses or have equivalent knowledge:

• Basic Calculus

- Limits, derivatives, integrals, sequences.
- Importance: Useful for understanding growth rates in algorithmic analysis.

• Basic Probability and Statistics

- Probability theory, random variables, distributions, expectation, variance.
- Importance: Helpful for analyzing algorithms with randomness or probabilistic analysis.

Definition of an Algorithm

Definition: An algorithm is a finite set of instructions that, if followed, accomplishes a particular task. In addition, it must meet the following criteria:

- Input: Takes zero or more inputs.
- **Output:** Produces at least one output.
- **Definiteness:** Each instruction must be clear and unambiguous.
- **Finiteness:** The algorithm should terminate after a finite number of steps.
- Effectiveness: Any instruction should be basic enough to be performed, ideally by a person using pencil and paper.

Example: Making a Cup of Tea

Let's consider the steps to make a cup of tea as an example of an algorithm:

- Input:
 - Water
 - Tea leaves or a tea bag
 - A cup
 - Sugar (optional)
 - Milk (optional)
- Output: A prepared cup of tea.
- Definiteness: Each step is clear and unambiguous:
 - Boil water.
 - Add tea leaves or a tea bag to the cup.
 - Pour boiling water into the cup.
 - Steep for 3-5 minutes.
 - Add sugar and milk if desired.
 - Stir and serve.

イロト 不同 トイヨト イヨト 二日

Example: Making a Cup of Tea

- **Finiteness:** The algorithm has a finite number of steps and will terminate once the tea is made.
- **Effectiveness:** Each step is simple enough to be performed by a person using basic tools (e.g., a kettle, a spoon).

Focus Areas

1 How to devise algorithms?

- Divide and Conquer
- Greedy Algorithms
- Dynamic Programming
- Backtracking
- Branch and Bound

e How to validate algorithms?

• Check if the algorithm is correct.

③ Performance Analysis

- Time complexity
- Space complexity

How to test algorithms?

- Debugging
- Profiling

Performance Analysis

Space Complexity: The amount of memory an algorithm takes to run to completion.

- The space S(P) required consists of two parts:
 - Fixed part (C): Independent of input size, e.g., instruction space, space for constants.
 - **2** Variable part (S_p) : Space needed for variables.

$$S(P) = C + S_p$$

Time Complexity: The amount of computational time an algorithm takes to run to completion.

Space Complexity Example

Example 1:

Algorithm abc(a, b, c)

1: return
$$(a + b + c)$$

Space Complexity: $S_p = 0$ (Fixed part only)

Space Complexity Example

Example 2:

A 1		<u> </u>		
$\Delta \log c$	hrithm.	Sum		n
/ ligo		Juni	(a,	

1: $s \leftarrow 0$

2: for $i \leftarrow 1$ to n do

3:
$$s \leftarrow s + a[i]$$

- 4: end for
- 5: return s

Space Complexity:

- Variables: *s*, *i*, *n*, *a*[*i*]
- Fixed part: s, i, n which occupy 3 bytes (1 byte each).
- S(P) = 3 + n (Fixed part + Variable part)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Time Complexity: Finding a Book in a Library

Imagine you are in a library with 1,000 books, and you need to find a specific book.

Method 1: Checking Each Book Individually

- Go book by book.
- Start with the first book, check if it's the one, then move on to the next, and so on.
- This approach is more straightforward: you check each book once.

Summary

You perform a linear search, going through the books one by one.

Method 2: Dividing and Conquering the Search

- The books are arranged alphabetically by title.
- Go to the middle of the library and check if the book is to the left or right.
- Continue dividing the number of books you're searching through until you find the book.

Summary

You efficiently narrow down the search by repeatedly halving the number of books to check.

From Intuition to Formalism

- We've seen different ways to search for a book, with varying levels of efficiency.
- How can we formalize these observations to compare them more easily?
- Let's introduce a tool to describe and compare these methods: a formal notation.

The Role of Input Size

- In general, we are not so much interested in the time and space complexity for small inputs.
- For example, while the difference in time complexity between linear (method 1) and binary (method 2) search is meaningless for a sequence with n = 10, it is gigantic for $n = 2^{30}$.

The Role of Input Size

Question

Let us assume two algorithms A and B that solve the same class of problems.

- The time complexity of A is 5000*n*, the one for B is 1.1^n for an input with *n* elements.
- For *n* = 10, A requires 50,000 steps, but B only 3, so B is superior to A.

Is this true or false? Justify your answer.

The Role of Input Size

Answer: False

- For *n* = 1000, A requires 5,000,000 steps, while B requires 2.5 × 10⁴¹ steps.
- While B appears better for small *n*, as *n* grows, A becomes far more efficient.
- This demonstrates the importance of understanding how algorithms scale with input size.

The Role of Input Size

27 / 45

The Role of Input Size

- This means that algorithm B cannot be used for large inputs, while algorithm A is still feasible.
- So what is important is the **growth** of the complexity functions.
- The growth of time and space complexity with the increasing input size *n* is a suitable measure for the comparison of algorithms.

The Growth of Functions: Big-O Notation

- The growth of functions is usually described using the Big-O notation.
- Big-O Notation is a way to describe the efficiency of an algorithm in terms of how it scales with input size.
- It helps us categorize algorithms and understand their behavior as the problem size grows.

Big-O Notation

Big-O: Let f and g be functions from the integers or the real numbers to the real numbers. The function f(n) is O(g(n)) if there exist positive constants C and k such that:

$$|f(n)| \leq C \cdot |g(n)|$$
 for all $n > k$

Example:

$$f(n) = 3n^2 + 2$$
 is $O(n^2)$

Common Time Complexities:

- O(1) Constant computing time
- O(n) Linear computing time
- $O(n^2)$ Quadratic computing time
- $O(2^n)$ Exponential computing time

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Big-O Notation

- When we analyze the growth of complexity functions, f(n) and g(n) are always positive. (Homework: Why?)
- We can simplify the Big-O requirement to:

 $f(n) \leq C \cdot g(n)$ whenever n > k

 To show that f(n) is O(g(n)), we only need to find one pair (C, k).

Example: Showing f(n) = 3n + 2 is O(n)

- Let f(n) = 3n + 2 and g(n) = n.
- Choose C = 4 and k = 1.
- For n > 1, $3n + 2 \le 4n$, so f(n) is O(n).

See the Visualization in Action: Click Here to View the Animation

Big-O Notation

- The idea behind the Big-O notation is to establish an upper boundary for the growth of a function f(n) for large n.
- This boundary is specified by a function g(n) that is usually much simpler than f(n).
- We accept the constant C in the requirement $f(n) \le C \cdot g(n)$ whenever n > k, because C does not grow with n.
- We are only interested in large n, so it is OK if $f(n) > C \cdot g(n)$ for $n \le k$. (Homework: Why?)

Logistics Introduction to Algorithm Analysis

Big-O Notation

Big-O: Example

Question

Show that
$$f(n) = n^2 + 2n + 1$$
 is $O(n^2)$.

Big-O: Example

Solution

For n > 1, we have: $n^{2} + 2n + 1 \le n^{2} + 2n^{2} + n^{2}$ $\Rightarrow n^{2} + 2n + 1 \le 4n^{2}$ Therefore, for C = 4 and k = 1: $f(n) \le 4n^{2} \text{ whenever } n > 1$ $\Rightarrow f(n) \text{ is } O(n^{2}).$

See the Visualization in Action:

Click Here to View the Animation

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Properties of **Big-O** Notation

Reflexivity: For any function f(n), f(n) = O(f(n)).

Example

If
$$f(n) = n^2$$
, then $f(n) = O(n^2)$.

Transitivity: If f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n)).

Example If $f(n) = n^3$, $g(n) = n^2$, $h(n) = n^4$, then: • f(n) = O(g(n))• g(n) = O(h(n))• Therefore, f(n) = O(h(n))

Constant Factor: For any constant c > 0 and functions f(n) and g(n), if f(n) = O(g(n)), then cf(n) = O(g(n)).

Sum Rule: If f(n) = O(g(n)) and h(n) = O(g(n)), then f(n) + h(n) = O(g(n)).

40 / 45

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Product Rule: If f(n) = O(g(n)) and h(n) = O(k(n)), then $f(n) \times h(n) = O(g(n) \times k(n))$.

<ロト<日ト<日ト<日ト<日、<
41/45

Composition Rule: If f(n) = O(g(n)) and g(n) = O(h(n)), then f(g(n)) = O(h(n)).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

42 / 45

Common Functions in Big-O Notation

• Popular functions g(n) are $n \log n, 1, 2^n, n^2, n!, n, n^3, \log n$.

イロン 不同 とくほど 不良 とうせい

43 / 45

- Listed from slowest to fastest growth:
 - 1
 - log *n*
 - n
 - *n* log *n*
 - n²
 - n³
 - 2ⁿ
 - n!

Steps to Determine Big-O Notation

1 Identify the Dominant Term:

- Examine the function and identify the term with the highest order of growth as the input size increases.
- Ignore any constant factors or lower-order terms.
- ② Determine the Order of Growth:
 - The order of growth of the dominant term determines the Big-O notation.

③ Write the Big-O Notation:

- The Big-O notation is written as O(f(n)), where f(n) represents the dominant term.
- For example, if the dominant term is n^2 , the Big-O notation would be $O(n^2)$.
- **•** Simplify the Notation (Optional):
 - In some cases, the Big-O notation can be simplified by removing constant factors or by using a more concise notation.
 - For instance, O(2n) can be simplified to O(n).

Example: Determining Big-O Notation

Example

Function: $f(n) = 3n^3 + 2n^2 + 5n + 1$

- **Dominant Term:** $3n^3$
- **Order of Growth:** Cubic (n^3)
- **3** Big-O Notation: $O(n^3)$
- **③** Simplified Notation: $O(n^3)$